PCOL2605 Notes

Pharmacodynamics

Selectivity

- Drugs act selectively by binding to certain proteins only
 - Drugs are not completely selective, but can act at lower concentrations at some protein targets than others
- Limits toxic effects, and targets specific proteins that regulate a disease state
- Multi-modal drugs can simultaneously act on multiple targets
- Drug targets Receptors, Ion channels, Carriers, Enzymes

Ion channels

- Protein gates that mediate entry/exit of ions to regulate cell membrane potential
- Voltage-gated, ligand-gated or mechano-sensitive ion channels
- Drugs blockers or modulators (increased or decreased opening probability) of ion channels
- Local anaesthetics, e.g. lidocaine
 - o Selectively inhibit pain-transmission in nerve fibres and interpretation of pain
 - Block Na⁺ channels in peripheral sensory nerves to block Na⁺ entry (and thus APs)
- Benzodiazepines (Diazepam) anticonvulsant, anti-anxiety
 - GABA produced in presynaptic neuron binds to postsynaptic GABA_A receptors → conformational change → increased Cl⁻ entry via ion channel
 - Cl entry into nerve cell reduces neuronal transmission of APs
 - o Diazepine allosteric modulator (activator) of GABA_A receptor channels
 - Allosteric binding of diazepine to GABA_AR potentiates actions of GABA to further increase Cl⁻ influx into cell
 - GABA must be bound to receptor for diazepine to work

Carriers/transporters

- Drugs can block transporters to promote a beneficial therapeutic effect
- Fluoxetine (Prozac) antidepressant
 - Selective serotonin reuptake inhibitor (SSRI)
 - o Inhibits serotonin (5-HT) transporters in brain to increase [5-HT] in neuronal synapse

Enzymes

- Drugs can act as inhibitors, false substrates, or prodrugs of enzymes
- Aspirin inhibits cyclooxygenase to reduce conversion of arachidonic acid to prostaglandins
 - Reduces pain and inflammation
- Parkinson's Disease increase dopamine to overcome loss from death of dopaminergic neurons
 - o L-dopa can cross BBB unlike dopamine bioactivated into dopamine within brain

Receptors

- Membrane or intracellular proteins that receive chemical information to regulate cell function
- Drugs agonists or antagonists
- Cannabinoids THC (main psychoactive constituent) is a partial agonist for CB₁ receptors in brain
 - \circ Δ^9 -THC mimics actions of anandamide (normal endogenous neurotransmitter)
 - o Anandamide is released from postsynaptic receptors and act on presynaptic CB₁R
 - Inhibit Ca²⁺ channels to block excess release of glutamate (neurotransmitter)
 which can be neurotoxic neuromodulatory/homeostatic mechanism
 - THC binds presynaptic CB₁R to mimic anandamide to offset neurotoxicity
- Rimonabant CB₁ antagonist, blocks endogenous neurotransmission of anandamide

Agonists

- Direct or indirect (via transduction mechanisms, G-protein coupling) effects
- Characterised by affinity (K_D) and intrinsic activity (efficacy/ability to alter cellular function)
 - Affinity depends on association (K₁) and dissociation (K₋₁) rate of drug-receptor complex
 - Binding forces electrostatic, hydrogen bonding, Van der Waals, covalent
- Affinity does not equal potency, as intrinsic activity must be taken into account ($K_D \neq EC_{50}$)
 - K_D = [ligand] that gives half occupancy of receptors to form ligand-receptor complex
 - o EC₅₀ = effective concentration that gives half-maximal response
- Agonists can be endogenous (from body) or exogenous
 - o ACh endogenous, released from nerves, activates nicotinic and muscarinic receptors
 - \circ Adrenaline released from adrenal medulla, activates α/β -adrenoreceptors
- Log-scale dose-response curves enables comparison of occupancy and potency relationships
 - o Parallel curves for drugs that act similarly

Antagonists

- Antagonists no effect/intrinsic activity, block endogenous mediators
- Atropine selective muscarinic antagonist

Action in Selective masearine artagonist		
Competitive antagonist	Non-competitive antagonist	
Parallel shift of agonist dose-response curve to	Non-parallel shift of agonist curve to right	
the right	Reduces maximal effect of agonist	
Can be overcome by high [agonist]	Cannot be overcome by high [agonist]	

Drug-receptor interactions

Receptors	Location	Effector	Coupling	Examples
Ligand-gated ion channels	Membrane	Channel (V _m)	Direct	nAChR, GABA _A R
G-protein coupled receptors	Membrane	Enzyme/channel	G-protein	mAChR, CB ₁ R
Kinase-linked receptors	Membrane	Enzyme	Direct/indirect	Insulin, GF
Intracellular receptors	Intracellular	Gene transcription	Via DNA	Steroid/thyroid

Ligand-gated ion channels (ionotropic)

- Contain ~20 transmembrane segments
- Surrounds a central aqueous channel through which ions selectively pass
- Mediate fast synaptic transmission (milliseconds)
- Alter electrical excitability of membranes to make APs more or less likely
- ACh must bind both binding sites to cause conformational change in nAChR, to enable Na⁺ entry

G-protein coupled receptors (metabotropic)

- Contain 7 transmembrane domains, linked to a G-protein
 - Linked to either ion channel or different enzymatic pathways
- G_s stimulatory; G_I inhibitory
- Mediate slow synaptic/neuro-transmission (seconds)
- Agonist binds receptor → linked G-protein mobilises effector → affects ion channel or enzyme
 - o E.g. Cannabinoids
 - Block Ca²⁺ entry into cell decreased release of neurotransmitters
 - Open K⁺ channels causing exiting decreased firing/transmission of impulse

Binding domain