Week 1

Types of neuroscience

Cognitive	Understanding higher level (human) thought processing						
	- MRI scan on Hippocampus and Amygdala where the redder the area is, the higher the						
	craving for cocaine is						
Behavioural	Biopsychology, why and how we produce certain behaviours						
	- Elevated plus maze to measure anxiety in laboratory animals						
Systems	How does this brain control body systems, how do body systems provide information to the brain?						
	- Modify brain systems (microinject chemicals into discrete brain areas) and see how						
	effects behaviour, blood pressure, respiration and renal – usually done in freely moving						
	animals or anaesthetized animals						
Cellular	How do neurons and/or glia work? Signalling in cells						
	- Immunohistochemistry, electrophysiology, connectome						
Molecular	How do molecules or chemicals work in brain cells to communicate, grow, change?						
	- Proteomics, immunohistochemistry, neuroinflammatory markers, HPLC, epigenetics						

Epigenetics: study of heritable changes in gene function that cannot be explained by changes in DNA sequence

Chromatin	DNA /protoin compley				
Cilioniatiii	DNA/protein complex				
	- DNA is packaged around histone proteins				
	- The tightness of the association between DNA and histone influence the				
	accessibility of a DNA sequence for transcription enzymes				
	The pattern of gene expression is influenced by the accessibility of a gene sequence to				
	transcription machinery				
Histone modification	Changing how tightly DNA sticks to histone proteins				
	Four important classes				
	1. Acetylation				
	2. Methylation3. Ubiquitination				
	4. Phosphorylation				
Histone acetylation	Addition of acetyl groups to lysine amino acids within the histone protein				
	- Catalysed by histone acetyltransferases (HATs)				
	- Neutralises the positive charge of the histone				
	- Weakens association with DNA – exposes DNA for transcription				
Histone deacetylation	- Catalysed by histone deacetylate (HDACs)				
	- Increases positive charge of the histone				
	- Strengthens association with DNA – reduces likelihood of transcription				
Histone methylation	Addition (HMT) or removal (HDM) of methyl groups to lysine residues				
	- Methylation can either enhance or silence transcription				
DNA methylation	Sticking methyl groups onto the DNA chain				
	- DNA methyltransferase enzymes (DNMTs) catalyse the addition of methyl groups				
	to Cytosine/Guanine nucleotide pairs (CGs) within a DNA strand				
	- Maintenance DNMTs restore methyl groups after DNA replication				
	- De Novo DNMTs add new methyl tags to DNA				
	DNA methylation reduces gene transcription – silences gene				
	- Methyl groups physically interfere with binding of RNA polymerase, inhibits				
	transcription				
	<u> </u>				

DNA demethylation encourages transcription					
	- Converts 5-methylcytosine to 5-hydroxmethylcytosine (5HmC)				
	- 5HmC promotes transcription of a gene				
microRNAs	Blocking the translation of mRNA into protein with microRNAs (miRNA)				
Neuroepigenetics	The role of epigenetic systems as regulators of neuronal function to influence the output				
	of neuronal circuits				

Alzheimer's Disease: memory loss, slowly progressing dementia

	loss, slowly progressing dementia				
Neurodegeneration	Selective death of <u>Acetylcholine</u> (Ach) cells				
	- Neurodegenerative disease characterised by protein accumulation in and				
	around neurons: intracellular neurofibrillary tangles and extracellular				
	amyloid plaques				
	- Amyloid plaques occur before neurofibrillary tangles				
Apraxia (movement)	Loss of ability to co-ordinate movements				
Aphasia (comprehension)	Loss of ability to articulate ideas and comprehend written/spoken word				
Agnosia (sensory)	Cannot interpret sensory stimuli				
Amyloid precursor protein	Cleave to make secretory products used in learning and memory storage				
	- 90% of the time making <u>AB40</u> which is used in learning and memory storage				
	but 10% of the time AB42 which is a by-product of the whole process				
	causing plaques and the brain clears this way – bamyloid plaques				
	In Alzheimer's Disease – APP cleavage has shifted (genetic, environment?)				
	- 10% of the time making <u>AB40</u> and 90% of the time making <u>AB42</u>				
	- Bamyloid protein may be responsible for starting cell death cascades				
Neurofibrillary tangles	Abnormal cluster of hyper-phosphorylated tau protein				
	- Tau protein helps to maintain axon shape and transport molecules from the				
	cell body to the terminals (microtubules)				
Genetic	apoE gene - Apolipoprotein E-4 (apoE-4) may predispose to plaque deposits				
	A2M gene - Usually clears plaque deposits, mutant form doesn't				
	- Role of genetic risk factors is increasingly less related to developing late-				
	onset AD: environmental influences are greater				
Environment	Triggers include				
	- Nutrition				
	- Exposure to metal or pesticides				
	- Stress				
	- Social factors				
	- Vascular risk factors				
	- Brain trauma				
AD: Histone Modification	In discordant twins				
	- Increased H3K9 trimethylation in hippocampus and temporal cortex				
	In AD				
	- Increased 4-hydro (HNE) – thought to alter histone-DNA interactions making				
	DNA more vulnerable to oxidative damage				
	- HDAC changes may differ across disease progression				
AD: DNA Methylation	Hypomethylation of APP or APP promotor: association with increased deposition of				
	bamyloid production				
	- Exposure to lead may reduce activity of DNMTs				
AD with mouse model	Neuron loss in the forebrain, Bamyloid accumulation and Tau pathology and				
	memory loss – AD is most likely a product of gene x environment (epigenetic)				
	interactions				
	l				