PHA 3021

Drugs in Health and Disease

Introduction to Principles of Therapeutics

Rationale

1. Requires knowledge of expected results before commencing therapy

- Efficacy, Lower limits of toxicity

2. Use endpoints to monitor progress and signal the need for change - right drug and right dose

- Different Dose (quantitative)
- Different Drug (qualitative)

3. Correct Diagnosis by understanding disease pathophysiology
4. Understanding pharmacology of potentially useful drugs - kinetics, efficacy, metabolism, adverse
5. Optimising selection of drug/ choice of therapy

Therapeutic Context

Efficacy, effectiveness, ceiling effect: The maximal effect obtained by a drug
Potency: The dose required to have a specific effect - more potent, smaller dose
Dose/Response: Graded on a continuous logarithmic scale

Graded ED $_{50}$ - Dose required to obtain 50% of the maximum effect

Quantal Dose/Response Relationships

- Bell shaped curve for the population
- Related to frequency of all or nothing effect
- QED ${ }_{50}$: Dose at which 50% of subjects exhibit the specified effect

Therapeutic vs. Toxic Effects: Therapeutic Index $\mathrm{TI}=\mathrm{TD}_{50} / \mathrm{ED}_{50}$

- Represents the measure of the margin of safety
- TD_{50} : Dose producing toxic endpoint in 50% of population
- $E D_{50}$: Dose producing therapeutic endpoint in 50% of population
- Used to use Lethal Dose LD_{50} - Dose which kills 50% of population, yet everyone will have therapeutic effect before it kills
- Minor headache: low effective dose and no toxicity

- Cancer: Will tolerate some toxicity e.g. chemotherapy

Applies Pharmacokinetics

1. Parameters needed for calculation dose

- Volume of Distribution - V_{d}
- Clearance-Cl
- Half Life - $\mathrm{t}_{1 / 2}$

2. Target concentration: need efficacy but avoid toxicity
3. Loading dose: Calculated to rapidly induce effective plasma [drug]
4. Maintenance dose: via infusion, repeated dosing if short half life
5. Age, pregnancy, health status, pharmacogenetics (fast and slow metabolisers)

Digoxin

- Cardiac glycoside used to heart failure
- Long half-life and large Vd with a low therapeutic index
- Increased toxicity in setting of hypokalaemia (low plasma K+)
- Monoclonal antibody targeting T-cell receptor
- Super agonist to promote T-cell activation
- Caused a cytokine storm, causing multiple organ failure and hospitalisation
- Now follow a single dose trial

BIA 10-2472

- Fatty acid amide hydrolase inhibitor to increase endogenous cannabinoids
- First trial no effects, but the second dose had all hospitalised and one dead
- Was an adaptive study, that changed the trial and did not need to report it
- Interval dosing between each subject is now required

Vioxx

- COX 1 generated prostaglandin for protection of stomach lining and platelet aggregation
- COX 2 is the inducible isoform, generates prostaglandin involved in inflammation
- VIGOR study found is was selective for COX 2 only and equally effective
- Found to have an increased incidence of stroke and heart attack
- Removed off the market after 4 years

Evidence Based Medicine

The integration of individual clinical expertise with the best available external clinical evidence from systematic research and patients values and expectation

Individual Clinical Expertise

- Clinical skills and clinical judgement
- Depends if it is useful for patient. i.e. not females due to reproductive issues

Best External Evidence

- From real clinical research

- Rapidly changing landscape
- Replaces currently accepted treatments and diagnostic tests with new ones

Patients Values and Expectations

Have always played a central role in determining

- Whether interventions take place
- Which interventions take place
i.e. Resistance by a patient

EBM Is Not
Not Cook Book Medicine

- Evidence needs extrapolation to patient's unique biology and values

Not Cost Cutting Medicine

- When efficacy for the patient is paramount, costs may rise

The 5 A's
Assess and Ask - Start with the patient - clinical problem and construct a well-built clinical question it
Acquire - Select the appropriate resources
Appraise - The evidence for its validity and applicability
Apply - Return and talk with patient and ingrate the evidence
Self-Evaluation - Evaluate your performance with this patient

Levels of Evidence
Level 4 - Case Series (Weakest)

- Descriptive study that is not analytical
- No control group
- Do not test a hypothesis between treatment outcome
- May generate a hypothesis for a clinical trial

Level 2+3 - Clinical Trials
Compare treatments and interventions
Randomised - limit bias
Controlled - To compare with no treatment
Blinded/Double Blinded - to minimise potential placebo effect
Crossover - Design where patient acts as own control
Level 1 - Systematic Reviews (Strongest)
Combining Controlled Clinical Trials using:

Cochrane Collaboration

- Combines drugs and diseases together
- Is a search engine

Problems with Evidence from Trials

- Narrow question posed and funded by big pharma
- Easily measurable surrogate parameters

Absolute vs. Relative Risk Reduction
Absolute
Event Rate 5\% - 3.5\% = 1.5\%

Relative Risk Reduction

= 1 - (treatment/placebo) X 100

In comparison:

$=50 \%$ better at lowering BP than drug A

- However, it does not lower BP by 50\%
- Probably under-powered to show mortality benefit

	Subjects	Deaths	Event rate
Placebo	2000	100	5%
Treatment	2000	70	3.5%

	Subjects	SBP at 1 yr	Δ SBP
state-of-the-art (Drug A + B)	500	160	-40
me-too add-on (Drug A C C)	500	140	-60

Appraise

- How true and valid are the results
- Cochrane reviews influences policy and practice
- Provides "Clinical Guidelines"
- Doctors likely to use EBM has better results for patients
E.g. Antibiotics use should not routinely be used for sore throat or middle ear infections

Torcetrapib

- Claimed to reduced CV events in patients by reducing LDL by increasing HDL
- Found that increased blood pressure and CV events even with a high HDL
- Poor evidence based meets big pharma due to potential $\$ 10$ billion market

Apply

- Adherence due to some reported risks. i.e. statins increase diabetes possibility but assist in decreasing CV risk so should still be taken

