THE BODY SENSES

The Somatosensory System

Somatosensory Transduction

- Tactile receptors:
 - Meissner's Corpuscles → superficial receptor which sits just under the epidermis where there's no hair on the skin, and selective to light touch.
 - Merkel's Disks → superficial receptor, lower than Meissner's corpuscles but still within the epidermis, and selective to light touch.
 - Ruffini's Corpuscles → deep receptor in the dermis, selective to pressure and vibration.
 - Pacinian Corpuscles → deep receptor in the subcutis, selective to the stretching of the skin.
- Thermoreceptors → "free nerve endings"
 - Warmth fibres signal an increase in skin temperature.
 - Cold fibres signal a decrease in skin temperature.
- Proprioception/Kinaesthesia
 - Muscle spindles → respond to muscle length and rate of stretch.
 - Golgi Tendon Organs → respond to muscle tension.
 - Joint receptors → respond to joint position.

Somatosensory Hierarchy

Two routes to the brain:

- Spinothalamic pathway → carries relatively slow temperature signals from free nerve endings.
- Lemniscal pathway → carries relatively fast signals from mechanoreceptors (touch, proprioceptors).
- The difference between the two pathways is because the lemniscal pathway is much more myelinated.
- Both pathways have branching circuits in the spinal cord that mediate reflex responses.

Cortical Organisation

- Primary somatosensory cortex is a thin strip running over the top of the head (ear to ear).
- Somatotopic organisation → bits next to each other on the body are represented next to each other in the cortex.
- Cortical magnification → some body parts (lips, hands) occupy a much greater cortical area than others.
 - The Somatosensory Homunculus → illustrates somatotopic organisation, and cortical magnification.

Discrimination: Two-Point Acuity

- Differences in perceived touch, the ability to discern that two nearby objects touching the skin are truly two distinct points, not one.

- Using a Yes/No or 2AFC procedure → a pair of calipers is placed on the skin surface, subject reports whether they feel 1 or 2 points.
- Calipers adjusted until subject can report the presence of points reliably (discrimination threshold or JND).
- Variation in acuity with body location mirrors cortical magnification.

Selectivity: Cortical Receptive Fields

- Receptive fields → the area wherein touch affects activity in a given cell each cortical cell responds to stimulation in a small area of the body surface.
- Centre-surround antagonism (aka 'Lateral Inhibition') → two concentric zones in the receptive field:
 - Cell activity is increased by stimulation in the centre (A), and firing rate is decreased by stimulation in the surround (B).
 - Stimulation in both areas results in hardly any change.
 - Amplifies responses to difference in stimulation within the receptive field.

The Vestibular System

- Signals head's acceleration and inclination relative to gravitational vertical.
- The body can move linearly along 3 axes (x, y, z) and can also rotate around them $\rightarrow x$ (roll), y (pitch), z (yaw).
- 3 semicircular canals → posterior, anterior and lateral (rotational acceleration)
- 2 otolith organs → utricle and saccule (linear acceleration and tilt).
- Stimuli for the vestibular system:
 - Linear acceleration along, or rotational acceleration around these axes.
 - Tilt with respect to gravitational vertical.
- Each are filled with fluid and a small patch of sensory hair cells → movement results in fluid flow, which displaces hair cells and leads to sensory responses.

- Y-axis (nodding), Z-axis (no headshake), X-axis (head tilt).

Vestibular Transduction

- The utricle and saccule (linear acceleration and tilt) each contain a patch of hair cells (macula) covered in a gelatinous carpet (otolithic membrane).
- Each semicircular canal contains a bundle of hair cells called a cupula projecting across the canal.
- Head acceleration or static tilts deflect the hair cells away from their resting position, causing activity in the sensory nerves.

Otolith Responses to Linear Head Movement

- Either linear x-axis (forward) acceleration OR static head pitch (chin up) deflects the
 otolithic membrane, triggering responses in the underlying receptors (same for y-axis
 and roll) → equivalent stimuli.
- Receptors are arranged on a horizontal otolithic membrane in the utricle, but on a vertical membrane in the saccule.
 - Each respond to motion in various directions along the flat plane of the otolithic membrane.
 - Between them, the pair of utricles and saccules will respond to *linear* acceleration or tilt along any axis.

Canal Responses to Rotational Head Movements

- Rotational acceleration causes fluid movement relative to the canals, as the fluids "lag behind" (due to inertia) the head/canal.
- Fluid deflects the cupula, causing responses in hair cells.

Vestibular Hierarchy

 Sensory nerve fibres from the hair cells project to the vestibular nuclei of the brainstem, then signals of four ways:

- 1. Vestibulo-cerebellar
 - Some direct projections from vestibular organs to cerebellum.
 - Movement feedback and posture ("keeping you upright and letting you know how your movements are translating into the changes in your body angle and attitude").
- 2. Vestibulo-spinal
 - Reflexive balance, including limb movements.
 - Doesn't necessarily have to go to the brain, can just go to the spinal cord.
- 3. Vestibulo-thalamic
 - Projects to cortex for balance perception.
- 4. Vestibulo-ocular
 - Compensatory and stabilising eye movements (vestibulo-ocular reflex VOR).

Vestibular Perception

- The oculogyral illusion:
 - Spin rapidly, then stop → illusionary movement of the body and of stationary object occur.
 - Due to inertia, fluid in the semicircular canals decelerate more slowly than the canal when spin stops.
 - The resulting shear is in the opposite direction to that produced by the original rotation.
- The oculogravic illusion
 - When the body undergoes linear acceleration, an illusory impression of body tilt occurs.
 - Linear acceleration and static head tilts both trigger responses in the otoliths.

