Developmental psychology

Week 1 – introduction to developmental psychology

- Defining development
 - > Systematic changes & continuities in the individual that occur between conception and death
- Goals of developmental psychology
 - 1. To describe
 - Normal development
 - Individual differences

> Normative descriptive approach

- Careful systematic observations of children
- Maturational theory → genetic determinants
 - Largely invariant (universal) sequences
 - Cycles 'better'/'worse' phases
- Provides descriptive age-norms
 - E.g. walking: nature → universal? Innate?
 Not learned?. Varied environment → shoes? Fitness? Cultural norms?

2. To explain

- Individual differences
- ➤ Positive change → growth in competence or capacity
- ➤ Negative change → loss of competence or capacity
- Change can be:
 - Quantitative- more/less (height, speed, vocab, visual acuity)
 - Qualitative-doing things differently (motor, language, thinking)
 - Sitting- crawling-walking
 - Thinking-reorganisation of thought and action e.g. mentally representing objects and words

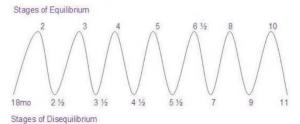
Normative change-universals

- General changes in behaviour across ages that virtually all children share
- Developmental milestone: walking, first words

> Idiosyncratic- individual differences

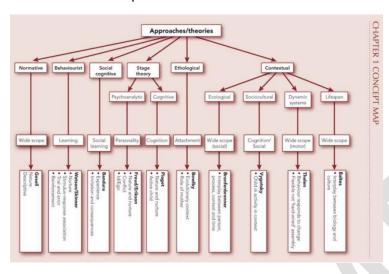
- Variability in when/how universal developmental milestones are achieved
 - Rate of development
 - Sequence of development
 - Style of responding / learning

3. To optimise


- To make a difference to peoples live trajectories
- Developmental theory can influence policy oriented action e.g. carer/child ratios in childcare
- evidence based theoretically grounded interventions can make a difference. → problems that confront our society are intergenerational

Developmental process

- ➤ Maturation → the biological unfolding of the individual according to plan contained in the genesnature
- ➤ **Learning**→ the process through which **experience** brings about relatively permanent changes in thoughts, feelings, or behaviour- nurture
- ➤ Epigenetics → process through which experience and environment can influence gene expression
 - Interventions -> make changes to the environment. Interplay of nature vs nurture
- What causes developmental change? Theory as a lens


Stages of Development

All children cycle in and out of stages of equilibrium and disequilibrium.

Gesell - rhythmic sequences

- Nature/nurture
- Example: child having problems at school
- Stance determines approach to children
 - 'Nature' child centred guided by child readiness eg., Piaget
 - 'Nurture' directive approach adult led eg., Vygotsky
 - Eclectic position interactions between the two
 - Social/Context focus how does the culture of the school match the culture of the family?
 - What demands does the culture make? What do people need to know to flourish in a particular culture?
- Developmental theories

Theoretical perspective	Nature versus nurture	Continuous versus discontinuous	Universal versus culturally specific
Normative- descriptive (Gesell)	Nature – maturation determines development	Discontinuous – maturationally determined cycles of behaviour (qualitative differences)	Universal
Psychoanalytic Freud/Erikson)	Interaction between nature and nurture – innate impulses directed by child rearing	Discontinuous – psychosexual/ psychosocial stages of development (qualitative differences)	Universal
Piagetian	Both nature and nurture – maturation determines structures, but experience vital	Discontinuous – stages of cognitive development (qualitative differences)	Universal
Behaviourism (Watson/Skinner)	Nurture – development results from conditioning	Continuous – no stages (quantitative change)	Culture-specific – individual differences emphasised
Social cognitive (Bandura)	Nurture – modelling and reinforcement	Continuous – no stages (quantitative change)	Culture-specific – individual differences emphasised
Ethological (Bowlby)	Both – emphasis on nature, but nurture (early experiences) influences later development	Discontinuous but no stages of development – critical/sensitive periods emphasised	Universal
Ecological (Bronfenbrenner)	Emphasis on nurture, but recognition of biological effects	Not specified – change emphasised more than stability	Culture-bound principles
Sociocultural (Vygotsky)	Interactionist – both biology and experience important	Both – continuous change results from interaction with adults; language acquisition results in stage-like change	Culture-bound principles
Dynamic systems (Thelen)	Both – inherited and experiential factors form an integrated system	Both – change is continuous but stage-like changes occur with reorganisation of the system	Both cultural universals and culture-bound changes

- > Baltes: an overarching & integrative theory
 - Development involves age-related change in adaptive capacity
 - 7 assumptions about development
 - 1. Lifelong process
 - 2. Multidirectional
 - 3. Involves both gains and losses at every age
 - 4. Lifelong plasticity → change in response to a positive and negative experiences
 - 5. Historically embedded (cohort effects)
 - 6. Contextualism as a paradigm (cultural effects)
 - 7. Understanding development requires multiple disciplines
 - Individuals respond to and act on contexts:
 - Physical environment / context
 - Historical context
 - Social context
 - Cultural context
 - Contextual influences

Normative age-graded influences

- Biological & environmental influences that are similar for individuals in a particular age group (in a particular context, at a particular time)
 - Puberty

- Menopause
- o Entry into school
- o retirement

Normative history-graded influences

- Common to people of a particular generation because of the historical circumstances they experience
 - o Economic boom
 - o Ww1
 - Baby Boomers
 - 0 9/11
 - Millennials
- Major source of influence during adolescence and early childhood

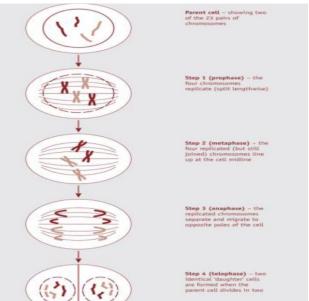
Non-normative life events

- Unusual occurrences that affects an individual but do not have a broader influence
 - Major accident
 - o Death of a parent
 - Winning the lotter
- Sources of such influences increases the lifespan → developmental pathways more varied after childhood
- Age as an explanatory variable?
 - Lifespan definitions are culturally and historically constrained
 - Different age-grades/norms in different cultures, cohorts
 - Physical/biological age
 - Psychological age
 - Social age
- Conceptualisations of age
 - Chronological age → number of years since birth
 - Biological age → age in terms of biological health
 - Psychological age → an individuals adaptive capacities compared to others of the same chronological age
 - Social age → social roles and expectations related to a persons age
- > Example: child behaviour
 - Microsystem- the home
 - E.g. martial conflict & discord parents → positive & negative interaction with children → negative child behaviour → marital discord
 - Mesosystem-neighbourhood community
 - E.g. quality of local playgroup, childcare centre will influence parenting capacity (indirect effect) and child behaviour (direct effect)

Week 2- Genes, Environment & prenatal development

Genes & environment: individual differences

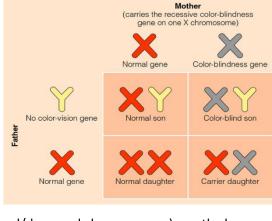
- What are genes
 - Units of hereditary information-"blueprint" for a structure or the 'recipe' for encoding a process
 - Genome is an algorithm or code
 - Comprised of sort segments of DNA
 - Genes (in pairs, one from each parent) are carried on chromosomes (n=46)
 - (23 pairs- 22 pairs of autosomes, 1 pair of sex chromosomes XX or XY)

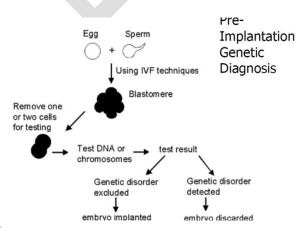

- Individual heredity
 - Mitosis → normal cell replication for somatic reproduction (skin, blood, muscles)
 - Single cell divides and replicates resulting in 2 identical cells
 - Each cell contains 2 sets of chromosomes
 - Growth, repair of aging tissues, skin
 - Meiosis → special process of cell division for sexual reproduction
 - Chromosome pairs come together- crossing over occurs → mixing genetic information from 2 chromosomes of the 2 parents
 - A 2nd division sequence occurs producing 4 cells each with ½ number of chromosomes of the original cell
 - Occurs prior to formation of sperm (males) ova (females)
 - Cells return to having the usual 'pair' of chromosomes after fertilization-sperm cells meet egg cells to produce a different genetic combination
 - Each chromosome in the egg (ova) and sperm cell is a unique mixture of maternal and paternal DNA
 - Mutations → errors in the process of meiosis or mitosis mean that chromosomal mutations can occur
 - Inversions, deletions, duplications, translocations

Basic genetic principles

- Dominant-recessive gene principle (the case of singe gene-pair inheritance)
 - There are 2 hereditary elements for each trait
 - 1 from the male parent
 - 1 from the female parent
 - These 2 alternate forms of the same gene are called "ALLELES"
 - One dominant allele can override the effect of the other recessive allele
 - Recessive genes are only expressed if both parents carry the recessive gene i.e there are 2 recessive genes
 - Gene for brown eyes (B) is dominant over the gene for blue eyes (b)
 - Genotype → genetic constitution
 BB, Bb, bB, bb
 - Phenotype → observable characteristic = eye colour
- BB = brown eyes (homozygous)
- Bb = brown eyes (heterozygous)
- bB = brown eyes (heterozygous)
- bb = blue eyes (homozygous)

Genetic disorders


- Some disorders carried on dominant gene → expressed in every individual carrying the allele e.g. Huntingdon's disease → strikes after 40 yrs (1/2 chance of inheritance)
- Some are carried on recessive gene e.g. Cystic Fibrosis; both parents have to carry the gene- there is a 1 in 4 chance of inheritance- (similar to eye colour example)
- CO-dominance→ effect of recessive gene is not totally masked so phenotype is a compromise
 - AB blood type
 - Skin colour (black+ white= light brown)



- Sex linked inheritance
 - Some traits are influenced by single genes that are located on the sex chromosomes
 - Typically "x-linked" (recessive)
 - These traits more likely to achieve expression in males why?
 - Red-green colour blindness
 - Haemophilia
 - Certain forms of deafness
 - Duchenne muscular dystrophy
- Chromosomal abnormalities
 - Child may receive too many or too few chromosomes (or abnormal/damaged chromosomes) mostly due to problems during meiosis chromosomal abnormalities are the main cause of spontaneous miscarriage
 - Down syndrome trisomy 21
 - Edwards syndrome trisomy
 - Turner syndrome
 - Klinefelter syndrome
- Prenatal diagnosis & genetic counselling
 - Ultrasound- routine
 - Maternal serum blood tests
 - Chorionic villus sampling
 - Nuchal translucency scan
 - Fluid at back of neck
 - 11-13 weeks
 - Relative risk only
 - Amniocentesis
- Polygenic inheritance
 - Many genes interact to produce a particular characteristic
 - Human genome project- humans have 30000 genes
 - Reaction range → a range of possible phenotypes for each genotype
 - Genetic potential for high IQ
 - Restricted environment IQ=80
 - Enriched environment IQ= 150
 - Genetic potential for average IQ
 - Restricted environment IQ = 50
 - Enriched environment IQ= 108

Studying gene environment interactions

- Research with animals & with plants and crops cant be used with humans
 - Experimental breeding→ animal models
 - Selective breeding → for heritable traits (e.g. activity level, wool types) selectivity mate animals exhibiting that trait
 - Genetic manipulation / editing → insert a particular variant of a normal gene in cells or "knockout" a normal gene- compare these experimental animals with control animals to determine the function of the manipulated genes
- Gene-environment contributions in humans
 - Kinship studies → e.g bipolar disorder, schizophrenia
 - Adoption studies
 - Twin studies → identical vs fraternal, twin/adoption designs
- Estimating genetic & environmental influences

- Human research: kinship studies
 - Compare relatives vs. unrelated people
- Twin study methodologies
 - Same environment→ in what ways are identical twins more similar than fraternal twins?
 - Different environment → identical twins separated near birth particularly informative
- Fraternal & identical twins
 - Identical twins- one fertilized ovum divides to form genetically identical individuals
 - Fraternal twins- 2 ova are released at the same time- each is fertilized by a different sperm
 - IVF & twins
 - o Mostly fraternal- baby gammy case
 - Changes in practice- fewer twins in recent years
- Twin study designs
 - What can we learn by comparing identical twins (MZ)& fraternal twins (DZ)
 - o MZ share 100%
 - o DZ share 50% of genes (like siblings)
 - For traits influenced by heredity, MZ twins will be more similar than DZ twins. For height:
 - MZ correlation is .86
 - o DZ correlation is .45
 - Limitations of twin 'designs'
 - Naturalistic cant systematically vary the environment
 - Cant randomly allocate to different environments
 - Cant' remove one twin experimentally
 - Questions the assumption that diversifying influences of environment are no greater for fraternal than identical twins
 - Parents who think twins are monozygotic or vice versa
- Adoption studies
 - Shared heredity genetically related individuals separated and reared in different environments-how similar are they? What does this tell us?
 - Shared environment -> genetically unrelated individuals reared in the same environment
 - Critical thinking
 - Children are not randomly allocated
 - Bias in placement with 'similar' parents
 - Meeting criteria for eligibility- screening
 - 'wanted' children adds value to environment

Epigenetics

- Changes in phenotype (appearance) or gene expression cam be caused by mechanisms other than changes in the underlying DNA sequence- instead, non-genetic factors can cause the organisms genes to behave differently
- Genes & environments do not make separate contributions to the phenotypic outcomes of behaviour
- Normally occurring environmental events influence gene activity- 'turn genes on'
- Genes are adaptively responsive to their internal (cellular) and external (nutrition, stress) environments
- Timing of genetic influences
 - Genes do not complete their work before birth. They provide potentials:
 - Turn on and turn off in patterned ways throughout lifespan
 - Passive → child passively receives correlated genes and environments
 - E.g. musical parents provide both genes & a musical environment
 - Evocative → child elicits reactions from parents that lead them to provide environments correlated with the child's genes
 - E.g. parents notice musical ability in child and respond by providing input to foster that ability

- Active → (niche picking) child's genes lead them to actively seek out correlated environmental experiences
 - E.g. musical child seeks to go to conservatorium for high school

