ANIM3361 ANIMAL POPULATIONS

Week One: Experimental Design \& Population Growth
Week Two: Age Specific Survival \& Application of Life Tables Week Three: Life Histories, Population Structure and Growth Week Four: Sustainable Harvesting \& Allee Effects Week Five: Population Viability Analysis (PVA) \& Metapopulations Week Six: Competition \& Predator-Prey Cycles Week Seven: Predator-Prey Cycles (Functional Response) Week Eight: What is a Community? \& Community Structure Week Nine: Community Organisation and Processes \& Equilibrium Communities

Week Ten: Community Organisation: Special Case of Islands
Week Eleven: Non-Equilibrium Communities \& Recruitment Limitation
Week Twelve: Metacommunities \& Stability, Alternate States and Ecosystem Function

Week Thirteen: Biodiversity \& Ecosystem Functioning

Experimental design

- Allows correct interpretation of results of surveys and experiments
- Avoids confounding factors
- Ensures appropriate level of generality (or specificity) is assigned
- Makes stats easier

Why (and when) use statistics?

- Expresses results in terms of probability of occurrence
- Measures difference between groups relative to variation within groups
- T-test: when comparing two groups of results
- One-way/factor ANOVA: comparing more than two groups of results
- Two-way/factor ANOVA: comparing two groups, but with an added factor (comparing sex, but also could be comparing a place of origin)
- Regression: when establishing a relationship between two variables
- Correlation: when two variables are co-relating
- Non-parametric statistics: if the data is not 'normally distributed' data
- One-tailed: when the hypothesis is about one thing being greater than the other
- Two-tailed: when the hypothesis asks which is higher or lower (no preconceived ideas)

Population Growth

- Population: individuals of the same species occupying a defined space at a particular time
- Problems with this definition: arbitrary, investigator defined, not the same as the definition of a species
- Relationships between $\mathrm{N}_{\mathrm{T} 1}$ (number in the population at time 1) and $\mathrm{N}_{\mathrm{T} 2}$ (number in the population at time 2)
- $\quad \mathbf{N}_{\mathrm{T} 2}=\mathbf{N}_{\mathrm{T} 1}+(\mathbf{B}+\mathrm{I})-(\mathrm{D}+\mathbf{E})$
- $\mathrm{B}=$ birth (the potential to produce offspring)
- $\mathrm{D}=$ death/mortality
- I = immigration (number moving into the population)
- $\mathrm{E}=$ emigration (number moving out of the population)
- $\mathrm{R}_{0}=$ net reproductive rate (the number of individuals added per individual per generation)
- $\wedge($ Lambda $)=$ finite rate of increase (number of individuals added per individual per year)
- Instantaneous rate: at a given interval of time an individual has a probability of breeding and a probability of dying, therefore: $\mathrm{r}=\mathrm{b}-\mathrm{d}$

How do we model population growth? - Three Fundamental Concepts:

- Populations tend to grow exponentially
- Populations show self limitation
- Consumer-resource interactions tend to be oscillatory

Populations tend to grow exponentially - either geometric with discrete (non-overlapping) generations or exponential with overlapping generations

- Non-overlapping generations
- $\mathbf{N}_{\mathbf{t}}=\mathbf{R}_{\mathbf{0}}{ }^{\mathrm{t}} \mathbf{N}_{\mathbf{0}}$ or $\mathbf{l}^{\mathbf{t}} \mathbf{N}_{\mathbf{0}}$ (the number after t generations equals the net reproductive rate to the power of t generations x the population size at the beginning OR lambda x the population size in the beginning)
- Assumptions: no immigration or emigration, no interactions with offspring and parents, assumed that R_{0} doesn't change
- Overlapping generations
- $\mathbf{N}_{\mathbf{T}}=\mathbf{N}_{\mathbf{0}} \mathbf{x} \mathbf{e}^{\mathrm{rt}}$ (the number after t generations equals the number size at the beginning $\mathrm{x} e$ to the power of the net reproductive rate $\mathrm{x} t$ generations)
- Rate of increase at time interval is proportional to population size
- For these models to work we need to assume we have unlimited resources and density independence

Populations show self limitation - density dependence

- Populations must have a carrying capacity $(\mathrm{K})=$ number of individuals that can be maintained indefinitely in the population
- The number of individuals that available resources can sustain
- Logistic growth =
- N cannot exceed K for any significant length of time
- N will increase initially by exponential growth
- As the population increases, the rate of increase in N slows
- At K the rate decreases to zero
- How does competition affect r ?
- Increased competition results in fewer resources
- Birth and death rate decreases
- Hence r decreases
- Assumptions =
- K is constant
- Age structure does not affect population growth
- B and D change linearly with N
- Population is sensitive to K
- Density affects all individuals equally
- No environmental stochasticity $=$ no chance effects

Models are deterministic

- = They lead to exact outcomes based on the parameters of the model
- Do natural systems operate deterministically?
- In reality populations are subject to stochastic (chance) processes that cause population parameters to vary in time and space

