Valuation of Bonds

Terminology

- Bond: long-term debt instruments issued by governments and corporations for the purpose of borrowing money/raising funds.
- Owners of a bond receive periodic interest payments over the life of the bond, and also get back principal amount (at maturity).
- Face Value (F): nominal amount of principal borrowed.

Value of Coupon Payments

$$
C=\frac{\text { Coupon rate } * \text { Face Value }}{\text { Number of payments per year }}
$$

Valuing a Bond

- The value is equal to the total present value of all coupon payments and face value of bond.
- The first term represents the PV of all coupon payments, and the second term represents the PV of principal amount.
- Yield to Maturity (YTM) is equal to r, and summarises its prospective return, given its market price.

$$
\text { Bond Price }(P V)=\frac{C}{r}\left[1-(1+r)^{-N}\right]+\frac{F}{(1+r)^{N}}
$$

Zero Coupon Bonds

- No coupons are payed
- Only the face value is paid at maturity
- Always sells at a discount (Price < F)
- No interest is earned; your compensation is the difference between the initial price and the face value

$$
\text { Price of a Zero Coupon Bond }=\frac{F}{\left(1+Y T M_{n}\right)^{n}}
$$

Bond Prices

1. Par (If Price $=$ Face Value):

- The only return that investors earn is from the coupons that the bond pays, hence, $\underline{\text { YTM }=}$ Coupon Rate.

2. Discount (if Price < Face Value):

- Investor earns returns both from receiving the coupons and receiving a face value that exceeds the price paid, hence, Coupon rate < YTM.

3. Premium (If Price > Face Value):

- Investor earns a return from receiving the coupons but this return will be diminished by receiving a face value less than price paid, hence, Coupon Rate > YTM.

Inverse Relationship between Bond Prices and YTM

- As YTM increases, the bond price will decrease
- As YTM decreases, the bond price will increase

Maturity and Prices

- A bond with a longer maturity (e.g. 30 years) will be more sensitive to interest rate changes than a bond with a shorter maturity (e.g. 2 years).

Price Yield Curve

- Relationship between P \& YTM:

Duration

- Maturity only measures time until final cash flow is paid, and ignores all interim cash flows.
- Hence, duration gives a more direct measure of interest sensitivity.
- Duration is a weighted average of cash flow times (expressed in units of time).
- The weighting coefficients are the PVs of the individual cash flows as a proportion of the total PV of all cash flows.

$$
\text { Duration }(D)=\frac{P V\left(C_{1}\right) \cdot t_{1}+P V\left(C_{2}\right) \cdot t_{2}+\cdots+P V\left(C_{t}\right) t_{n}}{\text { Total } P V}
$$

- Note: Duration is always shorter than maturity for all bonds except for zero coupon bonds.

Modified Duration

- Linked to the slope of the price yield curve

$$
\text { Modified Duration }\left(D_{m}\right)=\operatorname{Volatility}(\%)=\frac{\text { Duration }}{1+Y T M}
$$

Debt and Interest Rates

- Nominal interest rate \rightarrow the rate you actually pay when you borrow
- Real interest rate \rightarrow theoretical rate paid, as determined by supply and demand

$$
r_{\text {real }}=\frac{r_{\text {nom }}-i}{1+i}
$$

Where:
' i ' is the expected annual inflation rate

The Risk of Default

- Corporate bonds have some level of risk \rightarrow payments promised to bondholders represent the bestcase scenario.
- Level of risk is dependent on the financial status of the firm, e.g. if company goes bankrupt, payments will not be received by bondholders.
- Credit risk: refers to this risk of default, and is judged by bond ratings.

Bond Ratings

Investment grade Bonds

Moody's	Standard \& Poo
Aaa	AAA
Aa	AA
A	A
Baa	BBB

Junk Bonds

Moody's	Standard $\&$ Poor's
Ba	BB
B	B
Caa	CCC
Ca	CC
C	C

- \quad Higher bond rating $=$ lower YTM (less associated risk),
e.g. Johnson and Johnson bonds have a AAA rating, but YTM is only 1.27%
- Lower bond rating = higher YTM (more associated risk),
e.g. Caesars Entertainment bonds have a CCC rating, however YTM $=25.7 \%$

Sovereign Bonds and Default Risk

- Sovereign debt is generally less risky than corporate debt; inflationary policies can reduce the real value of debts.
- If a government has foreign debt, they may default, which affects bond prices and YTM.
- Having 'own' currency debt is less risky, since the government can print money to repay bonds.

