

Learning outcomes:

- Explain how enzymes speed up chemical reactions
- Discuss why enzymes are important in biology, medicine and industry
- Define the following terms: enzyme, active site, activation energy, transition state, initial state, steady-state kinetics, K_m, and V_{max}
- Explain how to experimentally determine K_m and V_{max}
- Calculate the enzyme activity from the experimental data

Enzymes: biomolecules with distinctive 3-D structure which catalyzes reactions so a lower activation energy is needed to convert a substrate to a product

Active site:

Activation energy:

Transition state:

Initial state:

Steady-state kinetics:

 \mathbf{K}_{m} : [S] at $\frac{1}{2}$ V_{max}

 V_{max} :

How enzymes work

- Employ catalytic mechanisms such as weak interactions, acid-base, covalent & metal ion catalysis
- Provide specific environment in the active site for a reaction to proceed faster compared to the uncatalyzed or spontaneous reaction
- Active sites lined with functional group (amino acids) that binds to the substrate and catalyze the chemical transformation to the product
- Affect reaction rate but not equilibria
- Lowers activation energy required to convert substrate to product and perform this with a high degree of specificity
- Form complex with substrate (ES)
- Enzyme catalysis = stabilization of the transition state through tight binding to the enzyme -William P. Jencks (1975)
 - o Transition state is unstable-metastable
 - It cannot be isolated and concentration cannot be measured
 - Enzyme works by stabilizing this transition state
 - It binds tightly due to specificity to the substrate and this lowers the activation energy- more stable= lower energy
 - Formation of bonds of substrate with enzymes lowers energy of the transition state
 - Rate of reaction depends on the height of the barrier, lower barrier means reaction is faster

Importance of enzymes

- Disease is caused by imbalance of enzymatic activity (excessive or deficient)
- Example: Phenylketonuria (PKU)
 - o Cause: deficiency in enzyme Phenylalanine Hydroxylase
 - Incidence: autosomal recessive, 1 in 8000-10 000 newborns
 - Clinical symptoms: severe mental retardation
 - Biochemical symptoms: increased concentrations of phenylpyruvate (keto acid of Phe) in blood and urine
 - Treatment: decrease phenylalanine in diet
- Drugs: target enzymes by either inhibiting or activating the enzyme target
 - Example: relenza (carbohydrate that binds with neuraminidase) inhibits neuraminidase enzyme in flu virus

Common Types of Enzymes

- Kinase (K) catalyzes phosphoryl transfer from one molecule (usually ATP) to another; eg. Hexokinase
 - Glucose + ATP -> Glucose-6-Phosphate + ADP
 - o Phosphate from ATP transferred to glucose
- **Phosphorylase (P'Lase)** catalyses covalent addition of inorganic phosphate (Pi) to a molecule:
 - e.g. Glycogen Phosphorylase = attach phosphate to glucose molecules in glycogen, releasing glucose 1-phosphate molecules from glycogen
 - Inorganic phosphate, not ATP
 - Use phosphate to break bonds and chop off molecule
- Phosphotase (P'Tase) Catalyzes cleavage of a phosphate to yield the dephosphorylated product and Pi; e.g. Glucose-6-Phosphatase

- o G-6-P ------ Glucose + Pi
- Opposite of enzyme kinase
- Takes of phosphate