Chemistry 1A Week 1-12 Notes

Contents

Lecture 1	2
Lecture 2	3
Lecture 3	3
Lecture 4	4
Lecture 5	5
Lecture 6	5
Lecture 7	6
Lecture 8	7
Lecture 9	7
Lecture 10	8
Lecture 11	9
Lecture 12	10
Lecture 13	11
Lecture 14	12
Lecture 15	14
Lecture 16	16
Lecture 17	18
Lecture 18	19
Lecture 19	21
Lecture 20	22
Lecture 21	23
Lecture 22	25

Lecture 1

The Atom

- Matter
 - Classified by state or pure/mixture
 - Matter (has mass, occupies space)
 - Pure (distinct composition + properties
 - Element (simplest form, cannot be broken down)
 - Compound (2 or more elements bonded)
 - Mixture (1 or more substance, retain own properties)
 - Homogenous (uniform composition)
 - e.g. copper sulphate solution
 - Heterogenous (varied composition)
 - e.g. iron filings in sulphur powder
- Separation of mixtures
 - o Filtration: based on difference of solubility (e.g. dirt + water)
 - Distillation: based on difference of boiling point (e.g. salt + water)
 - Chromatography: based on differences in affinity between compound and substrate (e.g. pigments in ink, forensics)
- Physical states
 - o Solid, liquid or gas depending on temperature and pressure
- Physical + Chemical Properties/Changes
 - Physical property measured/observed without changing composition/identity (e.g. colour, melting point)
 - o Physical change: change form but not chemical identity (e.g. state)
 - Chemical property involves chemical change (reaction which involves transformation of products to reactants, cannot recover reactants using physical techniques)
- The Atom
 - Neutral chemical species with a positive nucleus comprised of neutrons and protons surrounded by negative electrons
 - Dalton's atomic theory
 - Matter consists of particles, particles are indestructible + can rearrange in reactions, all
 particles are identical in pure element, different elements differ in properties, particles
 in compound present in constant ratio
 - Molecule: neutral collection of atoms held together by covalent bonds from shared electrons
 - o Ion: atom with electrons added to give negative charge or removed to give positive charge
 - Element: atoms of the same type categorised by number of protons (Z)
 - Compound: substance containing more than one element in a set proportion; comprised of molecules, ions or a covalent network
 - o Isotope: atoms with the same number of protons but different number of neutrons and thus different mass (A)
- Conservation of Mass
 - No gain or loss of mass in chemical reactions
 - Elements always combine in same proportions by mass in a specific compound

Lecture 2

The Atom (cont.)

- Weighing atoms
 - o Can weigh atom using a mass spectrometer, which separates atoms to weigh them
 - Mass of C-12 is 1.99255 x 10⁻²³g; as it is so small chemists use atomic mass units (amu) and
 C-12 is equivalent to 12amu
 - 1amu = 1/12 x mass of C-12 = 1.66054 x 10^{-24} g
 - C-12 is used as a standardiser for masses
 - Can find molecular mass by adding relative atomic mass of constituent elements
- Periodic table
 - o Elements ordered by increasing atomic number; organised in periods and groups
 - Elements of the same group have the same properties, elements of the same period have the same number of electron shells
 - Group 2 = alkaline earth metals
 - Group 3-12 = transition metals
 - Group 15 = pnictogens
 - Group 16 = chalcogens
 - Group 17 = halogens
 - Group 18 = inert gases
 - o First published in 1869 by Mendeleev but ordered by increasing atomic mass
 - Organised by patterns in properties of known elements, left spaces for undiscovered elements
 - o Atomic theory: s, p, d, and f block

Lecture 3

Measurement

- Units: specific standard quantity for property used to measure all other quantities of property
 - o Specific properties have standard (SI) units and can be built from seven base units
 - Temperature is property of matter that determines whether heat/energy can be transferred;
 measured in Kelvin (Celsius + 273.15) with 0K as absolute zero
- Exponential + Scientific Notation: convention for writing very large/small numbers using 10^x
- Uncertainty: exact (defined values/counting) + inexact (limited equipment accuracy) numbers
 - Absolute certainty: same units as quantity; % uncertainty: $\frac{\text{absolute uncertainty}}{\text{measured quantity}} \times 100$
 - Significant figures: all digits except zeros on left hand side (and right if no decimal point)
 - Addition/subtraction: same number of decimal places as measurement with fewest
 - Multiplication/division: same number of sig fig as measurement with least sig fig
 - Multi-step calculations rules applied at end of each step (retaining one additional digit)
- Accuracy is proximity to true value, precision is proximity to previous measurements
 Representation of molecules
- Chemical formulae: relative number of each type of atom present (e.g. H₂O)
 - For binary compounds, elements further to the left appear first, (hydrogen is written last except with group 16/17), if in same group lowest element is first
 - o Ionic compounds: cation then anion with total charge zero, may have form hydrate (.H₂O)
 - o For covalent compounds carbon, hydrogen, then remaining elements alphabetically
- Structural formulae: