Locomotion & Posture Module

Module Learning Outcomes

Contents

Bones	3
Learning Outcomes	3
Bone modelling & Remodelling	4
Skeleton	4
Muscles	Error! Bookmark not defined.
Learning Outcomes	Error! Bookmark not defined.
Introduction	Error! Bookmark not defined.
Skeletal Muscle	Error! Bookmark not defined.
Joints	Error! Bookmark not defined.
Learning Outcomes	Error! Bookmark not defined.
Introduction	Error! Bookmark not defined.
Joint Classification: Structural & Functional	Error! Bookmark not defined.
Manus & Pes	Error! Bookmark not defined.
Manus	Error! Bookmark not defined.
Pes	Error! Bookmark not defined.
Manus: Feline vs Canine	Error! Bookmark not defined.
The Stifle Joint	Error! Bookmark not defined.
Learning Objectives	Error! Bookmark not defined.
Anatomy	Error! Bookmark not defined.
Applied anatomy	Error! Bookmark not defined.
The Hip Joint	Error! Bookmark not defined.
Learning Objectives	Error! Bookmark not defined.
Hip joint: anatomy	Error! Bookmark not defined.
Clinical importance	Error! Bookmark not defined.
Imaging Techniques	Error! Bookmark not defined.
Radiography	Error! Bookmark not defined.
Ultrasonography	Error! Bookmark not defined.
Endoscopy	Error! Bookmark not defined.
Tomography: MRI & CAT	Error! Bookmark not defined.
Nuclear Medicine:	Error! Bookmark not defined.
Biceps Tenosynovitis	Error! Bookmark not defined.
Muscle Histology	Error! Bookmark not defined.
Learning Objectives	Error! Bookmark not defined.
1) Smooth muscle	Error! Bookmark not defined.
2) Skeletal muscle	Error! Bookmark not defined.
3) Cardiac Muscle	Error! Bookmark not defined.
Muscle Histology Practical	Error! Bookmark not defined.
Skeletal Muscle	Error! Bookmark not defined.

Smooth muscle	Error! Bookmark not defined.
Cardiac Muscle	Error! Bookmark not defined.
Histology of Cartilage and Bone	Error! Bookmark not defined.
Learning Outcomes	Error! Bookmark not defined.
Cartilage	Error! Bookmark not defined.
Bones	Error! Bookmark not defined.
Bone & Cartilage Histology Practical	Error! Bookmark not defined.
Canine Compact Bone: Transverse H&E	Error! Bookmark not defined.
Canine Hyaline Cartilage: Transverse H&E	Error! Bookmark not defined.
Canine Elastic Cartilage: Transverse H&E	Error! Bookmark not defined.
Canine Fibrocartilage (intervertebral disc): H&E	Error! Bookmark not defined.
Canine Endochondral Ossification: H&E	Error! Bookmark not defined.
Learning Objectives:	Error! Bookmark not defined.
Excitable Cells	Error! Bookmark not defined.
Learning Objectives	Error! Bookmark not defined.
Resting Potential	Error! Bookmark not defined.
Excitable tissue	Error! Bookmark not defined.
Graded potential	Error! Bookmark not defined.
Action Potential	Error! Bookmark not defined.
Neuromuscular Junction	Error! Bookmark not defined.
Muscle Physiology I	Error! Bookmark not defined.
Learning objectives	Error! Bookmark not defined.
Neuromuscular control	Error! Bookmark not defined.
Muscle Power & Motor unit	Error! Bookmark not defined.
Muscle Physiology 2	Error! Bookmark not defined.
Learning Objectives	Error! Bookmark not defined.
Sarcomere	Error! Bookmark not defined.
Sliding filament model	Error! Bookmark not defined.
Control of contraction	Error! Bookmark not defined.
Contraction Coupling Summary	Error! Bookmark not defined.
Calcium dysregulatory illnesses	Error! Bookmark not defined.
Muscle Physiology 3	Error! Bookmark not defined.
Learning Objectives	Error! Bookmark not defined.
Speed vs Endurance	Error! Bookmark not defined.
Muscle Fibres:	Error! Bookmark not defined.
Muscle adaptation to regular activity:	Error! Bookmark not defined.
Equine exertional rhabdomyolysis	Error! Bookmark not defined.
Muscle Physiology Tutorial	Error! Bookmark not defined.

Bones

Learning Outcomes

- Recognise, Describe and Interpret:
 - Function, structure, classification & features of bones
 - Composition of skeleton

Function of the Skeleton

- Structural
 - Supportive framework for body
 - w/ Muscle attach points
 - System of levers for locomotion
 - Protection of organs
- Metabolic
 - Source of calcium
- Houses bone marrow
 - Haematopoiesis

Composition of Skeleton

- Invertebrates
 - Dense connective tissue
- Lower vertebrates
 - Cartilage (Chondrostei)
- Higher vertebrates
 - Bone
 - Developmentally formed by ossification of connective tissue and cartilage

Common anatomical features

Articular surfaces/Processes & Depressions

- Where tendons attach
- Articulation with adjacent bones

Bone Structure

Two types of bone

Compact/cortical

- Forms outer layer of bone
- 60-70% mineral
 - hydroxyapatite
- 30% organic
 - Type I collagen
- Bone marrow in central medullary cavity
 - Young animals red
 - Adult marrow yellow

Spongy

- Located internally
 - Short/irregular/flat bones
 - Extremities of long bones
- Red bone marrow between spicules

Long Bones

Epiphyses

- Extremities
- Generally thin cortical bone
- Except area of high tension
- Articular cartilage (freely movable joints)
- Epiphyseal plate: growth plate

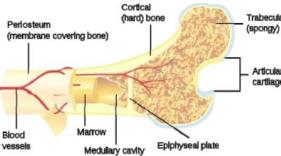
Diaphysis

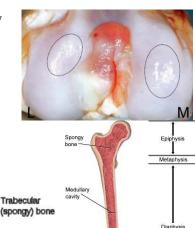
- Shaft 0
- Thick layer of cortical bone 0
- Medullary cavity
 - Nutrient foramen

Metaphysis

Disappears in adulthood

Periosteum


- 2-layer membrane
 - Fibrous: outer layer
 - Attachment tendons/ligaments
 - Blood vessels
 - Cellular: osteogenic layer
 - Bone production


Endosteum

- Membrane lines inner hollow
- Contains osteoblasts

Articular cartilage

- Hyaline
 - Covers articular surfaces
 - Glassy appearance
 - No nerves or blood vessels
 - Absorbs shock
 - 60-80% water

Bone classification – Shape

- Long Humerus
- Short Tarsal bones
- Flat scapula
- Irregular vertebrae

Specialised Bones

- Pneumatic air filled cavity
- Sesamoid near freely moving joints "ball bearing" like function
- Splanchnic located in soft tissue (ossa cordis, os penis)

Bone is living tissue

- Supplied by nerves, blood and lymphatic vessels
- Repairs following damage
- Self-remodelling in response to stresses
 - E.g. Bone fracture resulting in more stress on one side
 - Bone deposition on this side, other side thins
- Can be affected by disease processes
 - Inflammation, infection, and neoplasia

Bone growth

- Growth genetically predetermined
- Growth plate = Physis
- Maximal growth:
 - results from free choice feeding of a food with excess of nutrients required for growth. Growth rate is maximal.

Controlled growth:

- results from restriction of food amount or specific nutrients to produce slower growth, with no change in ultimate adult size
- Controlled growth minimises skeleton risks

Biomechanical Characteristics

- Physical activity
- Hormones
 - o PTH, GH, Steroids, Calcitonin
- Lack of activity
- Age
- Gravity
- Bone deposits

Bone modelling & Remodelling

- Bone formed on/in existing bone
 - Due to Activation formation (A-F) or activation resorption (A-R) sequence
- Occurs during growth and healing
 - Minimally after skeletal maturity
- Osteoblasts & osteoclasts act independently at different sites
- Potential to create or resorb large amounts of bone
- Changes shape, curvature, or cortical thickness of a bone

Bone Remodelling

- Bone is resorbed & formed at same place
 - Occurs by ARF sequence (activation resorption sequence)
 - Occurs due to secondary osteon formation
 - Occurs from growth to death
- Main normal physiologic mechanism for altering bone material organization & mass in adult skeleton.
 - E.g. asymmetrical adaptive remodelling of metacarpal bones in greyhounds
- At best, leads to maintenance of bone; but with age it leads to net loss of bone (osteoporosis).

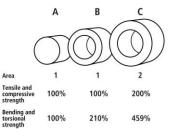
Biomechanical Performance

Optimal performance relative to weight

Spongy bone

Forces influence

lamellar pattern


Dynamic structure – responds to external forces

The Law of Bone Remodelling

Bone is laid down where it is needed and removed where it Skeleton is not needed

Bone Modelling

Inherent long bone strength responds to mode of external loading force

Clinical relevance is potential fracture type as a result from the

Bone Radiographic Examples

Tensile loading

- Generally from muscles
- Can stimulate bone growth
- Fractures are usually an avulsion
 - Other injuries include sprains, strains, inflammation, bony deposits
 - Human example: Osgood-Schlatter's disease
 - Repetitive injury during growth
 - Quadriceps muscle group exerts increased load on tibial tuberosity
 - Inflammation

Osteosarcoma

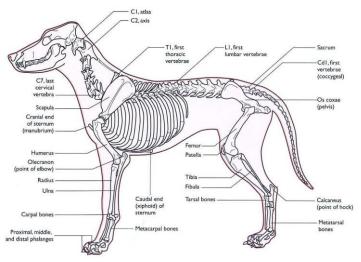
- "Osteo" bone
- "Sarcoma" type of malignant tumour

Bone: Infection

Computer tomography (CT) scan of a cat skull with a fungal infection

Axial

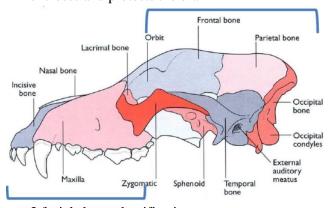
- Skull & mandible
- Hyoid apparatus
- Vertebral column, ribs & sternum


Appendicular

- o Forelimb (thoracic limb)
- Hindlimb (pelvic limb)

Heterotrophic

Os penis, ossa cordis



Axial Skeleton

Bones of the head, neck, trunk & tail.

Skull

- Many individual bones joined firmly by connective tissue which may ossify with age
- Consists of a **facial portion** housing the nasal cavity, forming the upper jaw and the **cranium** which encloses and protects the brain

- 3 facial shape classifications
 - Relative length of facial portion
 - Brachycephalic (short)
 - Mesaticephalic (average)
 - Dolichocephalic (long)

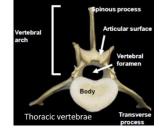
Mandible

Lower jaw

Two halves united rostrally in the median plane

Hyoid apparatus

- Several small elongated bones joined by cartilage
- Supports the tongue & larynx


Vertebral column

Consists of individual vertebrae through which the

spinal cord courses

Cervical

- Mammals: 7
 - excluding dugong
- Transverse foramina
 - Allows passage of vertebral artery, vein and sympathetic trunk
- Intervertebral foraminae
 - Spinal nerves

Thoracic

- Dog: 13
- T11 anticlinal vertebra
 - Spinous process projects straight up

Lumbar

- Dog: 7
- Elongated cranial directed transverse process

- All mammals: individual sacral vertebrae fused
- Dog: 3 fused vertebrae
- Supports all the weight of the abdominal organs & structures without aid of the ribs
 - Clinically: chronic hair loss
 - Flea allergy dermatitis
 - Hip dysplasia
 - Sacral nerve pain

Caudal

Dog: 20 approximately

Ribs

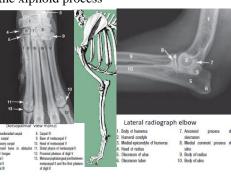
Correspond in number to the thoracic vertebrae with which they articulate

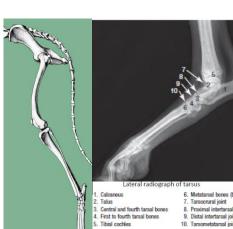
Sternum

- Consists of individual bones united by cartilage:
 - dog: 8 bones
 - 1st sternebra is called the manubrium
 - 8th sternebra is called the xiphoid process

Appendicular Skeleton

Forelimb


- Scapula
- Shoulder
- Humerus
- Elbow joint Radius
- Ulna
- Carpal bones (Dog: 7)
- Metacarpal bones (Dog: 5)
- Phalanges (singular: phalanx)


Hindlimb

- Pelvis
- Hip
- Femur
- Knee (stifle)
- Tibia
- Fibula
- Tarsal bones (Dog: 7)
- Metatarsal bones (Dog: 5)
- Phalanges: proximal, middle, distal
 - polydactyl

Heterotopic skeleton

- Os penis
 - Penile bone aiding in sexual intercourse
 - Maintains stiffness
 - Not present in humans
- Ossa cordis

Foundations of Veterinary Science A Locomotion and Posture Gross Anatomy Practicals

Contents

Practical 1: Extrinsic Muscles of the Thoracic Limb	34-43
Practical 2: Intrinsic Muscle of the Brachium.	
Practical 3: Distal Intrinsic Muscles of the Antebrachium	59-78
Practical 4: Muscles of the Proximal Pelvic Limb	79-100
Practical 5: Distal Pelvic Limb & Stifle Joint	101-117
Practical 6: Skull and Neck	
Practical 7: Vertebral column	
Practical 8: Abdominal Wall, Diaphragm & Inguinal Canal	134-135

Practical 7: Vertebral Column

Components:

- Bones of the vertebral column
- Joints of the vertebral column
- Muscles of the vertebral column
- Imaging of the vertebral column

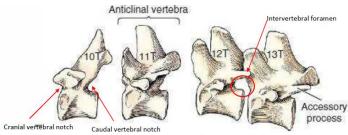
Vertebral Column Notes

Bones of the Vertebral Column

- 50 irregular bones within 5 regions
 - o Cervical (7 vertebrae) C1-C7
 - o Thoracic (13 vertebrae) T1-T13
 - o Lumbar (7 Vertebrae) L1-L7
 - o Sacral (3 vertebrae[fused]) S1-S3
 - o Caudal (≈20 vertebrae) Ca1-Ca20

Vertebral column function:

- Locomotion and posture
 - Vertebral column a flexible rod through which propelling forces transferred through body
 - Attachment point for limb muscles
- Protection of the spinal cord
 - This lies in vertebral canal
- Formation of the thoracic, abdominal and pelvic cavities
 - o These protect the viscera


General features of the vertebrae

Body:

- Constricted centrally and bound cranial and caudally by vertebral end plates
- Intervertebral disc lies between end plates

Vertebral arch:

- Consists of paired pedicles and paired lamellae
- Extending dorsally from the dorsal lateral portions of the body, it forms a short tube, the vertebral foramen.
- Vertebrae foramen collectively form the vertebral canal – surrounds spinal cord
- Vertebral arch has two indentations as it attaches to the body.
 - The shallow <u>cranial vertebral notch</u> and the deeper caudal vertebral notch.
 - When articulated, the caudal notch of the cranial vertebrae and the cranial notch of the caudal vertebrae form a foramen, the intervertebral foramen.
 - The spinal nerve roots and blood vessels pass through this foramen.

- Most vertebrae have large # of processes that act ligament and muscle insertion points
 - Dorsal spinous processes:
 - Formed from the fusion of paired lamellae

o Transverse processes:

- Paired lateral (or ventolateral projections) from the vertebral arch
- Articular processes:
 - Paired cranial and caudal processes
- Some vertebrae show additional processes such as the mammillary processes and accessory processes

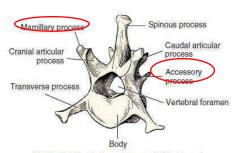
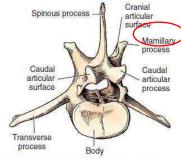
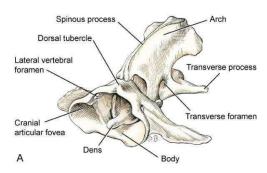
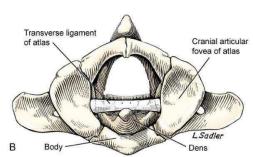


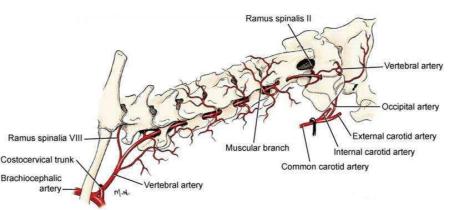
FIGURE 4-70 First lumbar vertebra, cranial lateral aspect,




FIGURE 4-71 Fifth lumbar vertebra, caudal lateral aspect.


Cervical vertebrae

C1&C2 are significantly different from others


- 1st cervical vertebral (C1) is the **atlas**
 - Lacks dorsal spinous process
 - Well-developed transverse processes wings of the atlas
 - Vertebral body greatly reduced known as the ventral arch.

- Has paired cotyloid (cup-shaped) cavities both cranially (cranial articular fovea) and caudally (caudal articular fovea).
 - form articulations with the rounded occipital condyles of the skull (cranially) and the cranial articular surface of the dens (caudally).
- o It has two paired foramen:
 - The alar foramen in the transverse process, allows passage of the vertebral artery.

- Lateral vertebral foramen in the vertebral arch, allows passage of the first nerve root and vertebral artery.
- 2nd cervical vertebral (C2) is the **axis**



Fig. 2-66 Axis, left lateral view.

- Dorsal spinous process: cranially overhangs the dorsal arch of the atlas.
 Caudally attaches to the nuchal ligament
- o Transverse process
- Transverse foramen: present within the transverse process
- Dens: cranioventral peg-like projection, held down by transverse ligament
- C3-C7

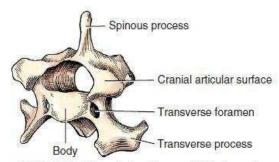
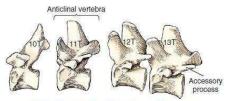



FIGURE 4-56 Fifth cervical vertebra, cranial lateral aspect.

- Dorsal spinous process
- Transverse processes: paired
- Large transverse processes of C6
- o Transverse foramen (C3-C6)
- Vertebral foramen/canal
- Cranial articular processes
- Caudal articular processes

Thoracic Vertebrae

FIGURE 4-66 The last four thoracic vertebrae, lateral aspect.

13 in the dog. The thoracic vertebrae have **very noticeable spinous processes**, although these begin to recess from vertebrae 10-13, where they become smaller and more cranially pointed rather than caudally. There are **minimal transverse processes** on these vertebrae. The ribs articulate here – joining to the **vertebral body** (into the **costal fovea**) as a costavertebral joint. This is joined bilaterally by the intercapital ligament running under the vertebral body. The number of the rib corresponds to the most caudal vertebrae that it's attached to. The attachment is solidified by the costatransverse ligament.

Lumbar Vertebrae

7 in the dog. Has large, **cranially pointed transverse processes**, and well developed **articular processes**. The cranial articular process has a projection called the <u>mamillary process</u>, this assists attachment of the epaxial muscles. The first five have an <u>accessory process</u> that project caudolaterally.

3 Sacral Vertebrae

Three fused together in the dog. Has a noticeable **dorsal crest**, **dorsal foramen**, **ventral foramen**, and a large transverse process called the **wing**. Supports the weight of the organs of the pelvic cavity.

Caudal vertebrae

Variable number. Grows progressively simpler.

Articulation of the articular processes (zygapophyseal joints):

Joints of the vertebral column

Intraspinous (join the spinous processes), **intratransverse** (join the transverse processes) ligaments are small & run between individual vertebrae.

Ventral and **dorsal body ligaments** run along the length of the column.

The **supraspinous ligament** runs along the dorsal surface of multiple spinous processes of the thoracic vertebrae, before culminating in the elastic **nuchal ligament** that runs from the 1_{st} thoracic vertebrae to the axis.

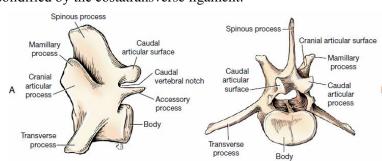


Fig. 2-71 A, Fourth lumbar vertebra, left lateral view. B, Fifth lumbar vertebra, caudolateral view.

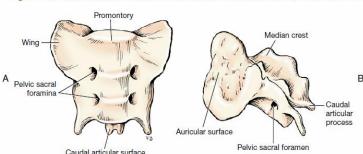
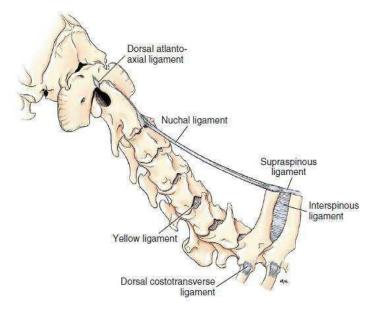
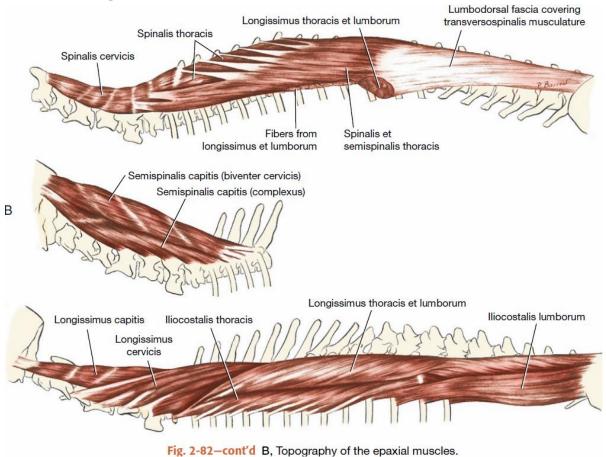
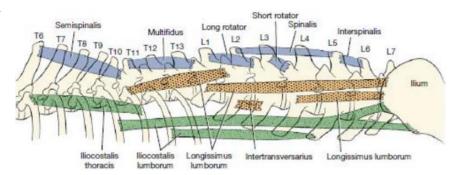



Fig. 2-72 A, Sacrum, ventral view. B, Sacrum, left lateral view.




Muscles of the vertebral column

Epaxial: extend spinal column & run along its length.

Three main groups – the transversospinalis, the longissumus, and the ilocostalis.

- Iliocostalis system: most ventral system
 - o m. iliocostalis, and its parts:
 - M. iliocostalis lumborum
 - M. iliocostalis thoracis
- Longissimus system: middle system
 - o **M. longissimus**, and its parts:
 - m. longissimus lumborum
 - m. longissimus thoracis
 - m. longissimus cervicis
 - m. longissimus atlantis
 - m. longissimus capitis
- Transversospinalis system: most dorsal system
 - o m. multifidus
 - o **m. spinalis et semispinalis**, and its parts:
 - semispinalis thoracis
 - semispinalis cervicis
 - semispinalis capitis, and its two parts
 - m.biventre
 - m.complexus

