BIO152 Cell Biology ### **Learning Objective Notes** ### **Contents** ### Cell structure - Introduction to cells - Cell ultrastructure ### Proteins, enzymes, membranes - Protein biosynthesis - Protein structure - Enzymes - Membranes and transport processes ### Cell energy generation - Introduction to energy generation - Glycolysis - The TCA cycle - Oxidative phosphorylation and growth - Alternative fuels - Gluconeogenesis ### Prokaryotic metabolism and growth - Diversity of prokaryotic metabolisms - Photosynthesis ### DNA replication, mutation, expression - Mutation ### Eukaryotic cellular growth, genetic diversity and inheritance - Eukaryotic cell growth and death - Chromosomes and mitosis - Meiosis and genetic diversity - Single gene inheritance - Sex determination and inheritance - Differentiation ## Cell Structure ### Introduction to cells ### **Learning objectives:** - Understand cell theory - Identify limiting factors for cells - Identify features that distinguish prokaryotes from eukaryotes ### Understand cell theory - 1. All organisms consist of one or more cells - 2. The cell is the basic unit of life - 3. All cells come from pre-existing, living cells All cells contain: plasma membrane, DNA, ribosomes, cytoplasm ### Identify limiting factors for cells - Cells need to exchange molecules, gases, etc over large surface area - Two options: - Cells remain unicellular but are small and unsuccessful (bacteria) - Large, multicellular, complex organisms, but still with small cells ### **Prokaryotes vs Eukaryotes** | | Prokaryotes | Eukaryotes | | |---------------------------|--------------------|------------------------|--| | Cell No. | Single-celled | Single or multi-celled | | | Growth | rapid | slow | | | Size | Small 0.5-3µm | Large (5-20μm) | | | Nucleus | None | Yes | | | Membrane-bound organelles | None | Many | | | Chromosome (DNA) | Single circular | Double linear | | | Ribosomes | Small 70S | Large 80S | | | Cell wall | Mostly present | Present in some | | | Cell division | Binary fission | Mitosis | | | Examples | Bacteria & archaea | Animals & plants | | ## Cell ultrastructure ### **Learning objectives:** - Name major organelles in eukaryotic cells and describe structure and function - Describe distinguishing features of plant and animal cells | Organelle | Structure | Function | | |----------------------------------|--|--|--| | Cell Membrane | Phospholipid bilayer with pores (proteins) Polar head, non polar tail | Define compartment Cell to cell
communication Endocytosis (taking in
external environment)
and exocytosis
(secretion) | | | Nucleus | Double membrane, pores,
nucleolus | Chromosomes (DNA) Histones: DNA binding proteins | | | Mitochondria | Double membrane, cristae
(inner folds), DNA, matrix,
enzymes | Cristae generate ATP for
energy Aerobic respiration Electron transport | | | Endoplasmic Reticulum | Single membrane, lumen inside, attached to nucleus | Rough = protein synthesis Smooth = lipid/steroid
synthesis, detoxification | | | Golgi Apparatus | Single membrane-bound sacs,
lumen | Forms vesicle and
secretes from cell by
fusing with membrane Synthesis of complex
sugars (polysaccharides) | | | Lysosome | Single membrane bound vesicle | Destroy/lyse material in vesicles Recycle cell contents Store enzymes | | | Chloroplast | Double membrane, thylakoids
in third membrane joined by
tubular membranes, forms
granum | Photosynthesis | | | Peroxisome (plant and
animal) | Vesicle, single membrane,
crystalline core | Buds from ER Packages and destroys
hydrogen peroxide
(h202) by turning into
water and oxygen using
catalase Protects from damaging
reactive oxygen species | |