1) What is Memory?

- Memory: draw upon past experiences to use in the present
- Memory requires a structural or functional change in the brain
- Current interests in memory:
 - o **Scientific**: cognitive science & neuroscience
 - Public: herbal supplements & nootropics (drugs)

Early Scientific Study

- Ebbinghaus' forgetting curve: forgetting follows an exponential function; the rate of forgetting occurs rapidly to start with, but slows down over time
- **Single-Trace Theory**: explains the forgetting curve by assuming that the strength of a single memory declines as a function of time between learning & the retention test
- Dual-Trace Theory: explains the forgetting curve results from two memory traces (ST & LT) whose strength decays at different rates

Memory Consolidation

- Memory Consolidation: following a learning experience (LE), a memory trace is vulnerable to disruption. With the passage of time, resistance to memory disruption increases & the trace becomes more stable due to functional & structural changes in the brain.
- Consolidation Processes: processes that stabilise the memory trace
- Consolidation Period: time it takes to stabilise the memory trace

 Ribot's Law: older memories are more resistant to disruption by traumatic events than newer memories (first to propose memory consolidation)

Temporal Gradient of Retrograde Amnesia

Active avoidance procedure (Duncan):

- 1) Rats trained on active avoidance procedure (2-compartment chamber: left side = shock; right side = nothing)
- 2) After so many trials, rats showed active avoidance of LEFT SIDE (run out of left side when being put in there)
- 3) Control or ECS (after being taken from the RIGHT SIDE):
 - o **ECS**: Rats given electroconvulsive shocks at different intervals after training
 - o **Control**: nothing
- 4) 24 hours later: rats put back into left side of chamber

- Measured active avoidance: how quickly rats run away
 - Control = Late ECS (run quickly) < Immediate ECS (stay in left side)
- Duncan believed this retrograde amnesia was due to a disruption of memory consolidation (disruption of the reverberatory circuit that underlies memory)
- BUT alternative explanation:
- Rats who received ECS immediately after training (after being taken from right side):
 - Associate Lside → little shock
 - Associate Rside → ECS (big shock)
- Prefer to be on the left side, show avoidance of right side

Passive avoidance procedure (Campbell):

- 1) Rats trained on passive avoidance procedure (2-compartment chamber: dark side = shock; bright side = nothing)
- 2) After so many trials, rats showed passive avoidance of dark side (stay in bright side when being put in there)
- 3) Groups after training (take from the DARK SIDE):
 - o Retention-control: nothing
 - o **Immersion-control**: immediately placed in water (tests stress of water)
 - o **Hyperthermia**: placed in ice cold water at different intervals
 - Immediately, 5 minutes later, 15 minutes later, 1 hour later
- 4) 24 hours later: rats put back in 2-compartment chamber
 - Measured passive avoidance: how long rats stayed in bright side
 - Retention-control = high passive avoidance of dark side
 - Immersion-control = high passive avoidance of dark side
 - Hyperthermia:
 - Immediately: no passive avoidance of dark side (amnesia)
 - 5 minutes later: low avoidance of dark side
 - 15 minutes later: slightly higher avoidance of dark side
 - 1 hour later: high passive avoidance of dark side
- Conclusion: retrograde amnesia is induced by disrupted memory consolidation from a stressful event (not merely an association)
 - In this case, the association was dark side → hypothermia, but the immediate group that should have had the strongest association btw dark side → hypothermia showed no avoidance of the dark side (retrograde amnesia)
- We can induce retrograde amnesia through stressful events immediately after a learning experience, but not after time passes (evidence of memory consolidation)
 - There is a temporal gradient for both retrograde memory enhancement & retrograde amnesia: most effective immediately after the learning event (LE)

2) Hormonal Modulation of Memory

- Endogenous hormone levels signal whether an event was important or not to remember, can either enhance or disrupt memory encoding
- Adrenal gland: produces hormones during stress
 - Medulla → epinephrine & norepinephrine
 - Cortex → glucocorticoids (e.g. cortisol); mineralocorticoids (e.g. aldosterone); sex steroids (e.g. testosterone)

TEMPORAL GRADIENT OF EPINEPHRINE

- 1) Rats trained on lick-suppression procedure (rat is thirsty with no water, rat put near sipper-tube, rat shocked while sipping)
- 2) Over trials, rat shows passive avoidance of sipper tube (latency to drink)
- 3) Injected with saline (control) vs. epinephrine:
 - Immediately
 - o 10 min
 - o 2hr
- 4) 24 hours later rats put back in cage, test latency to drink
 - o Immediate: longest to drink (then 10min, then 2 hr, then saline)
- Conclusion: temporal gradient effect for retrograde memory enhancement by epinephrine (immediate epinephrine = stronger memory)

Mechanisms of Action for Epinephrine Modulation of Memory

TEMPORAL GRADIENT/INVERTED U SHAPE EFFECT OF GLUCOSE

- 1) Rats trained on lick-suppression procedure (rat is thirsty with no water, rat put near sipper-tube, rat shocked while sipping)
- 2) After experiencing shock, rat will show passive avoidance (longer to sip from tube)
- 3) After training \rightarrow glucose injections:
 - Immediate injections:
 - Saline control group
 - Glucose (1mg, 10mg, 100mg, 500mg)
 - 1-hour delayed injections:
 - Glucose (100mg)
- 4) 24 hours later: rats put back into cage with sipper tube (measure latency to lick):
 - Saline control group: lowest avoidance (quick to lick)
 - Immediate glucose groups:
 - Inverted U-shape function:
 - 1mg: low avoidance (= control)
 - 10mg: high avoidance
 - 100mg: highest avoidance (slowest to lick)
 - 500mg: lower avoidance
 - Delayed glucose groups: lowest avoidance (quick to lick)

Effects of Epinephrine

- Increases glucose release → enhances memory through this mechanism
- But there is a temporal gradient effect → glucose only enhances memory immediately after the LE (due to memory consolidation)

Effects of Glucose on Memory in Humans

Manning et al. (1998) experiment on elderly humans:

- 1) Ps drink orange juice containing sugar (glucose), or saccharine (no glucose)
- 2) Ps read a story on 2 occasions, 1 week apart
- 3) Prior to reading on one occasion, Ps drank a glucose-infused drink while on the other occasion, Ps drank a saccharin-infused drink
- 4) 1-week later test for memory of each story

- o Glucose group > saccharine group (blood glucose levels after drinking glucose)
- Glucose group > saccharine group (items remembered from story)

Effects of ACTH

- ACTH: produced by pituitary gland & primary effect on the adrenal gland
- Increase ACTH → increase cortisol & epinephrine

TEMPORAL GRADIENT/INVERTED U SHAPE EFFECT OF ACTH

- 1) Train rats on lick-suppression procedure
 - 2) Injection groups:
 - o Injected w/ saline immediately after training
 - Injected w/ ACTH immediately after training
 - Small dose
 - Medium dose
 - Large dose
 - o Injected with ACTH after 2-hour delay
 - 3) 24 hours later: rats put back into cage with sipper tube (measure latency to lick)
 - Inverted U-shape function:
 - Saline: 50sec to lick
 - Small ACTH: 100sec to lick (strong memory)
 - Medium ACTH: 150sec to lick (strongest memory)
 - Large ACTH: 10sec to lick (weakest memory → retrograde amnesia)
 - Large ACTH disrupted memory
 - Delayed ACTH: 50sec to lick (no effect)
 - Conclusions:
 - Hormones can be enhancers or disrupters of memory
 - Effects of post-training exogenous ACTH vary as function of dose and training shock intensity

Reading: Memory - a Century of Consolidation

- Evidence suggests memory consolidation serves an adaptive function by enabling endogenous processes activated by an experience to modulate memory strength: emotionally arousing experiences are generally well remembered
 - Adrenal stress hormones, epinephrine & cortisol, released by emotional arousal, play a key role in strengthening the memory of an experience

3) Stress & Memory in Humans/Effects of Chronic Stress

Effect of Stress & Arousal on Human Memory

Cahill & McGaugh (1996) – PET Scan Experiment:

- 1) Adults saw emotionally-arousing clips (E) or emotionally-neutral clips (N)
- 2) Took a PET scan to measure brain activity while watching clips
- 3) Free recall test 3 weeks later
- Results:
 - Ratings of film emotionality = E>N
 - Number of films recalled = E>N
 - E group: +ve correlation right amygdala glucose lvls & no. of films recalled
 - I.e. more right amygdala glucose = more films remembered

