THEORIES OF CONDITIONING

RELATIVE SIGNAL VALIDITY (WAGNER ET AL., 1968)

- Learning occurs when CS has predictive validity of US, relative to other cues
- Learning is not just based on contingency i.e. contingency not necessary for conditioning
 - \circ Evidence: When shock (US) equally predicted by tone (CS1) and light (CS2), P(US|CS) = P(US| \overline{CS}) BUT, learning still acquired reliably as both CS are good predictors of US (Durlach)

Experiment 1 (Wagner)

- 1. TL: T + L → US
- 2. $TL/L+: T+L \rightarrow US \text{ and } L \rightarrow US$
- 3. TL/L: $T+L \rightarrow US$ and $L \rightarrow nothing$
- 4. Test: T
- Results: Most conditioning in TL/L
 - o TL → overshadowing
 - o TL/L+ → similar to blocking effect
 - o TL/L- → suggests T is much better predictor than L
- Limitations:
 - o No. of presentations of US and L/T not controlled between groups
 - Group 2 has higher no. of shocks
 - Group 2 + 3 have higher no. of L presentations

Experiment 2

- 1. Correlated: T1 + L \rightarrow US, T2 + L \rightarrow nothing
 - a. Type of tone correlated w/ US vs nothing i.e. T1 has high signal validity for US, T2 has high signal validity for no US
 - b. L equally paired w/ US vs nothing (50%) \rightarrow lower signal validity than T1/T2
- 2. Uncorrelated: T1 + L \rightarrow US/nothing (50%), T2 + L \rightarrow US/nothing (50%)
 - a. Type of tone uncorrelated w/ US vs nothing (50%) i.e. both have poor signal validity
 - b. L equally paired w/ US vs nothing (50%) \rightarrow not lower signal validity than T1/T2, actually bit better as paired with all US presentations

- 3. Test: T1, T2, L
- Controlled for no. of presentations of US, T1, T2, L
- L equally paired w/ US/nothing in both groups (50%) but signal validity of other CS differed between groups
- Results:
 - o Correlated: T1 > L > T2
 - Less CR to L as T1 had high signal validity for US
 - Least CR to T2 as never paired with US
 - Uncorrelated: L > T2/T1
 - Most CR to L as paired w/ US the most times, although all paired w/ US at 50% i.e. most trials of 'partial reinforcement'

MODELS OF LEARNING

VARIATION IN ATTENTION TO CS (MACKINTOSH): FOCUS ON CS

- Attention is limited resource which requires allocating
- Overshadowing effect depends on salience of accompanying CS
 - 1. Higher intensity of CS e.g. louder noise → more overshadowing
 - 2. More important CS w/ more usefulness as predictor → more attention allocated compared to other CS
 - Explains overshadowing vs blocking, and Wagner's signal validity experiment
- Limitations:
 - \circ Does not work with every phenomenon \rightarrow decreased prominence over years

VARIATIONS IN PROCESSING OF US (KAMIN): FOCUS ON US

- Learning occurs when event is unexpected/differs from expectations e.g. US occurs when unexpected → expectancy model is updated
- E.g. in blocking, US is anticipated due to pre-conditioning with CS so no learning occurs

RESCORLA-WAGNER MODEL

- Numerical equation following Kamin's model of expectancy
- Describes when learning occurs and rate of learning → can predict learning in paradigm

$$\Delta V = \alpha \times \beta \times (\lambda - \Sigma V)$$

- V = knowledge of CS-US association (specific to each CS)
 - Updated each trial as each trial = opportunity to learn
- ΔV = Change in knowledge of CS-US association i.e. amount of learning
- ΣV = Expectation of US, given associative strength of **all CS** present i.e. total knowledge of associations
 - o Begins with 0 at first trial w/o any prior learning
- λ = Experience of US i.e. max learning supported by given US
 - o Determines final level of learning (after infinite trials)
 - o Typically 1 when US present, 0 when absent in extinction
- $(\lambda \Sigma V)$ = Prediction error discrepancy between what occurs and what's expected
 - o >0 = +ve prediction error; US occurs unexpectedly
 - o <0 = -ve prediction error; US does not occur when expected
- Psychological parameters: Regulate rate of learning without them, learning would occur on first trial
 - o α = Salience of CS (0< α ≤1)
 - β = Salience of US (0< β ≤1)

STEPS TO USING RESCORLA-WAGNER MODEL

1. Calculate ΣV of all CS together

- 2. Calculate ΔV for individual CS
- 3. Update V for individual CS (Vnew = Vold + Δ V)
- 4. Repeat with each trial

LEARNING IN RESCORLA-WAGNER MODEL

- Analogy: λ is a pie each trial, CS takes a slice proportional (α x β) to amount of pie left i.e. ΔV
- Learning: Prediction error decreases, ΔV decreases and V increases across trials \rightarrow deceleration of learning until asymptote λ (max learning)
 - \circ $\Sigma V = 0$ in first trial
 - $\circ \quad \Sigma V = V + \Delta V \text{ each following trial}$

- Larger $\alpha \rightarrow$ larger ΔV each trial \rightarrow reach same λ quicker (steeper)

- Overshadowing: When 2 CS share V
 - More salient CS (larger α) has higher rate of learning than less salient CS
 - Takes larger slice of pie than the other CS on each trial
 - Learning to individual CS (V) is less than if conditioned by itself (on same trial) as have to share
 - But ΣV (all CS) is same and reaches same λ

- Blocking: Pre-trained CS₁ has high V₁ prior to training \rightarrow high ΣV (total V for all CS) at start \rightarrow small ΔV on each trial
 - o Less of pie left to be shared
- Relative signal validity: TL \rightarrow US and L \rightarrow US trials; conditioning to L occurs w/o sharing with T and overall Σ V grows faster
 - o L takes slice of pie w/o sharing with T

RESCORLA-WAGNER MODEL AND CONTINGENCY

- Good conditioning occurs when CS-US paired but poor when on random schedule
 - Wagner: Context can function as a CS i.e. it predicts US → blocks conditioning to CS
 as it is more useful predictor
- Odling-Smee (1975): Presenting shock w/o CS → conditioning to context
 - o Tone (CS) + shock (US) in black box
 - o Controls: CS w/o US, and US w/o CS
 - o 6 groups w/ 10 CS + 10 US presentations but varying proportions of US signaled by CS

- o Results: Decreasing proportion of US signaled by CS → conditioning to context → less time spent in black box
- Durlach (1983): Using another CS (CS2) to signal extra US → rescued conditioning to CS1
 - o Works because any CS is more salient than ambient context → take up better signal

EXTINCTION

EXTINCTION AS UNLEARNING IN RESCORLA-WAGNER MODEL

- Extinction: Reduction in CR when CS is no longer paired w/ US
- Extinction in Rescorla-Wagner model:
 - o $\lambda = 0$ as US not presented
 - o $\Sigma V = 1 \text{ w/ max learning}$

 - o V decreases and approaches 0 i.e. 'unlearning' association

PARTIAL REINFORCEMENT

- Partial reinforcement: US does not always follow CS
- RW model can model partial reinforcement schedules using 'extinction' on non-reinforced trials
 - o V increases on reinforced trials as $\Delta V = \alpha x \beta x (1 \Sigma V) > 0$

- o V decreases on non-reinforced trials as $\Delta V = \alpha \times \beta \times (0 \Sigma V) < 0$
- Maximum amount of learning depends on % of trials where CS is followed by US

- Partial reinforcement extinction effect (PREE): Slower extinction with partial reinforcement schedule
 - o RW model incorrectly predicts extinction: Longer time to extinguish in higher rft schedule as more learning attained (higher asymptote) but not true
 - o Reasons for PREE:
 - In 100% reinforcement schedule: Training + extinction phase easily distinguished
 - In partial rft schedule: Harder to distinguish training + extinction phase as unsure whether extinction or non-reinforced trial → slower to learn US doesn't follow CS

EXTINCTION =/= UNLEARNING

- Spontaneous recovery: CR can recover over passage of time

Conditioning	Extinction	Test1 (same day)	Test2 (next day)
CS1 → US	CS1 –	CS1?	
CS2 → US	CS2 –		CS2?

- Higher CR to CS2 tested on day after extinction than CR to CS1 tested on same day as extinction
- o Amount of spontaneous recovery:
 - Decreases w/ more extinction trials, over more days
 - Increases w/ more time elapsed between extinction and test

- Rapid reacquisition: CR learnt faster after extinction than before during training (steeper curve)

Condition	Extinction	Re-condition
CS → US	CS –	CS → US
		CS → US

- Renewal: CR occurs when CS presented in different context to extinction

Group	Condition	Extinction	Test
Ext-A	A: CS → US	A: CS –	A: CS?
Ext-B	A: CS → US	B: CS –	A: CS?
Control	A: CS → US	B: -	A: CS?

- o Ext-A (AAA): Extinction + test in conditioning context → most extinction w/ least CR
- o Ext-B (ABA): Extinction in diff context, test in conditioning context → less extinction w/ more CR (lower suppression ratio)

o Control: Exposed to B without extinction, test in conditioning context → no extinction

- Application: Relapse in fear response in real world context after exposure therapy/extinction in clinic → need extinction in multiple contexts
- Reinstatement: Responding reinstated if US presented alone

Westbrook et al (2002)

THEORIES OF EXTINCTION

- 1. Rescorla & Wagner: Extinction = unlearning of CS-US association
 - Phenomena suggest that extinction =/= unlearning of CS-US association, but rather additional learning
- 2. Creation of (excitatory) CS-no US association/memory (Bouton)
 - Formation of conflicting memories
 - Training: Memory of CS → US (not context-specific)
 - Extinction: Memory of CS → no US (context-specific)
 - CR determined by type of memory retrieved in testing: Depends on time and context
 - i. Spontaneous recovery: Over time, forget memory of CS → no US
 - ii. Renewal: In different environment than extinction context, CS-US memory retrieved
 - iii. Reinstatement: US reminds them of CS-US memory
- 3. Extinction as inhibition: Creation of inhibitory link between CS and US which suppresses CR from original CS-US association

CONDITIONED INHIBITION

INHIBITORY LEARNING AND CONTINGENCY

- Conditioned inhibition = Negative contingency: $P(US|CS) < P(US|\overline{CS})$
- Two paradigms:
 - 1. CS and US are explicitly unpaired
 - o Originally used as 'control' for less contiguity

2. CI paradigm: CI, when paired w/ excitatory CS (CS+) does not lead to US

o CI = Safety signal (when aversive US) or frustrative signal (when appetitive US)

TESTS FOR CONDITIONED INHIBITION

- 1. Summation test: S reduces responding to another CS+ (not previously paired), as S associated w/ no US
 - 1) Conditioning: A \rightarrow US, B \rightarrow US
 - 2) Conditioned inhibition: B + light → no US i.e. light becomes CI
 - 3) Test: A (CS+) + light (CI) \rightarrow lower CR
- 2. Retardation test: Subsequent learning of excitatory S-US association is impaired, as S associated w/ inhibition

CONDITIONED INHIBITION AND RW MODEL

- 1. CI, when paired with CS+ does not lead to US
 - o Excitatory CS (A) paired w/ new CS (X) without US i.e. AX-
 - $V_A = 1$, $V_X = 0$, $\lambda = 0$
 - $(\lambda \Sigma V) = 0 \Sigma V \text{ i.e. } < 0$
 - Therefore $V_A \rightarrow 0$, V_X increasingly -ve over trials
 - o As Vx <0, X becomes conditioned inhibitor
- 2. CI and US are explicitly unpaired: X not paired w/ US, US occurs when X not present
 - o –ve discrepancy i.e. $(\lambda \Sigma V)$ <0 as context acts as CS+ and leads to expectancy of US
 - o → X becomes conditioned inhibitor with V<0

CORRECT PREDICTIONS OF RW MODEL'

- Protection from extinction: CI prevents CS+ from extinction

Group	Conditioning	Extinction	Test
Control - extinction	$A \rightarrow US; B \rightarrow US$ $X (CI) + A \rightarrow no US$	B → no US	B? → less CR (extinction)
Protection – CI + CS+	$A \rightarrow US; B \rightarrow US$ $X (CI) + A \rightarrow no US$	X + B → no US	B? → no decrease in CR i.e. X protects B from extinction

- As Vx < 0, there is less or no prediction error/discrepancy i.e. $\Sigma V = 0 \rightarrow (0 \Sigma V) = 0$, $\Delta V = 0$
- Super-conditioning: CI, when paired w/ neutral stimulus/CS+ and US → higher V for CS+ than if conditioned by itself (higher CR when tested alone afterwards)

Conditioning	Test
Y → US	Y? → CR
X (CI) + Y → US	Y? → higher CR

- o As Vx < 0, Σ V is smaller → (1 Σ V) is larger → Δ V is larger → Σ V_Y is >1
- Overexpectation: Compound conditioning of 2 CS+ after independent conditioning → decrease in V; lower V for more salient stimulus
 - $(\lambda \Sigma V) = 1 2 = -1 \rightarrow \Delta V < 0$
 - o ΔV for more salient stimulus is larger \rightarrow lower V

INCORRECT PREDICTIONS OF RW MODEL

- Extinction of CI: When CI is presented on its own w/o US, RW predicts extinction
 - $0 \quad \Delta V = \alpha \times \beta \times (0 (-V)) > 0$
 - o V increases towards 0 i.e. extinction
 - o But this does not occur
- Pairing neutral CS w/ CI w/o US → conditioning of CS-US association
 - o $\Delta V = \alpha \times \beta \times (0 (-V)) > 0$ for both CI and CS
 - o V for neutral CS increases → +ve i.e. excitatory CS
 - o This does not occur

THEORIES OF INHIBITION

- Inhibitory association formed which inhibits memory of US (whilst excitatory association primes memory of US)
- Excitatory association between CS and 'no US' (Bouton)
- Excitatory conditioning to generate opposite motivational state
 - \circ E.g. Cl as safety signal \rightarrow relief rather than fear when US = shock

○ CI as frustrative signal → frustration rather than hedonic response when US = food