
 

[FIT2004 Sample Notes- Algorithms] 
Highlighted yellow means its recommended you know these areas in depth- they are likely 
to show on the mid-sem and final exam 

Week 1: 
Lecture and tute participation: 10% 
Mid-sem test: 10% 
Assignments: 20% 
Final exam: 60% 
 

1. Proving correctness of algorithm (loop invariant) 
 
A loop invariant is: 
In simple words, a loop invariant is some predicate (condition) that holds for every iteration 
of the loop (start and end of the loop). For example, let's look at a simple for loop that looks 
like this: 
 
int j = 9; 
 
for(int i=0; i<10; i++)   
   j--; 
In this example it is true (for every iteration) that i + j == 9. A weaker invariant that is also 
true is that i >= 0 && i <= 10. 
 
To prove correctness, we know to show that an algorithm: 

- Always terminates, and 
- It returns the correct result when it terminates 

 
2. How to write a recurrence relation from a piece of code 

We want to know how to do this, as it’s a way for us to determine the complexity of an 
algorithm. 
 
A recurrence relation has a: base case + inductive case 

 
Take this code: 



 
 
Base case: T(1) = b, where b is a constant 
Our program terminates when we return 1 or x, this is done in constant time, hence b. T(1) 
is garnered from the case (N== 1), but T(0) = b is also acceptable as the base case. 
 
Inductive case: T(N) = T(N-1) + c, where c is a constant 

- Look at power(x, N-1), this is T(N-1) 
- X * power(x, N-1) takes a constant operation, hence the +c. Almost always expect 

the +constant when analyzing a piece of coding in the inductive case. 
 

 
3. Solving a recurrence relation 

 
Take for example this recurrence relation, where b and a are constants. To solve it via 
backwards substitution: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 
 
Also know how to do: Proof by induction. it was not asked in my mid-semester or final 
exam, but it may appear in yours/a good thing to know.  

Week 2: 
Comparison based sorting algorithms; 
Blue means in these examples that the numbers have been sorted 
 
Selection sort: Find min element in unsorted each time  
Example: 
Given this array below 
2 8 5 3 9 4 
 
2 | 8 5 3 9 4  <- 2 is min element in the array 
2  3 | 5 8 9 4  <- swap 3 and 8 
2  3 4 | 8 9 5 <- swap 4 and 5 
2  3 4 5|  9 8 <- swap 5 and 8 
2  3 4 5 8|  9  <- swap 8 and 9 
 
Insertion sort: Place next element in unsorted array to sorted 
Example array: 
Given this array below 
 
2 8 5 3 9 4 
2 | 8 5 3 9 4 
2 8 | 5 3 9 4 
2 5 8 | 3 9 4 
2 3 5 8 | 9 4 
2 3 5 8 9 | 4 
2 3 4 5 8 9 

 
 

Non comparison-based sorting algorithm: 
a) Counting sort: sorts a word alphabetically  
- O(n+d) complexity, d is the size of count array for integers 



- O(n) complexity for sorting alphabets 
 
Example of what algorithm does (for alphabets): Sort BAAD alphabetically 
Create a list of size 26, each letter corresponds to each letter of the alphabet 
A List[0] = 2 
B List[1] =  1 
C List[2] =  0 
D List[3] = 1 
…. 
 
For x in list 
 Append character list[x] number of times 
 
Output: AABD 

 
b) Radix sort: O(MN) complexity, N is number of words, M is the length of each word 

Sorts multiple words alphabetically.  
 
Example = CAT, ARC, TAC, ART 
Example of what the algorithm does: 
 
Sort on third column 
TAC 
ARC 
ART 
CAT 
 
Sort on second column 
TAC 
CAT 
ARC 
ART 
 
Sort on first column 
ARC 
ART 
CAT 
TAC 
 
Final sorted alphabetical list is thus: ART, ARC, CAT, TAC 
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