

[FIT2004 Sample Notes- Algorithms]
Highlighted yellow means its recommended you know these areas in depth- they are likely
to show on the mid-sem and final exam

Week 1:
Lecture and tute participation: 10%
Mid-sem test: 10%
Assignments: 20%
Final exam: 60%

1. Proving correctness of algorithm (loop invariant)

A loop invariant is:
In simple words, a loop invariant is some predicate (condition) that holds for every iteration
of the loop (start and end of the loop). For example, let's look at a simple for loop that looks
like this:

int j = 9;

for(int i=0; i<10; i++)
 j--;
In this example it is true (for every iteration) that i + j == 9. A weaker invariant that is also
true is that i >= 0 && i <= 10.

To prove correctness, we know to show that an algorithm:

- Always terminates, and
- It returns the correct result when it terminates

2. How to write a recurrence relation from a piece of code

We want to know how to do this, as it’s a way for us to determine the complexity of an
algorithm.

A recurrence relation has a: base case + inductive case

Take this code:

Base case: T(1) = b, where b is a constant
Our program terminates when we return 1 or x, this is done in constant time, hence b. T(1)
is garnered from the case (N== 1), but T(0) = b is also acceptable as the base case.

Inductive case: T(N) = T(N-1) + c, where c is a constant

- Look at power(x, N-1), this is T(N-1)
- X * power(x, N-1) takes a constant operation, hence the +c. Almost always expect

the +constant when analyzing a piece of coding in the inductive case.

3. Solving a recurrence relation

Take for example this recurrence relation, where b and a are constants. To solve it via
backwards substitution:

Also know how to do: Proof by induction. it was not asked in my mid-semester or final
exam, but it may appear in yours/a good thing to know.

Week 2:
Comparison based sorting algorithms;
Blue means in these examples that the numbers have been sorted

Selection sort: Find min element in unsorted each time
Example:
Given this array below
2 8 5 3 9 4

2 | 8 5 3 9 4 <- 2 is min element in the array
2 3 | 5 8 9 4 <- swap 3 and 8
2 3 4 | 8 9 5 <- swap 4 and 5
2 3 4 5| 9 8 <- swap 5 and 8
2 3 4 5 8| 9 <- swap 8 and 9

Insertion sort: Place next element in unsorted array to sorted
Example array:
Given this array below

2 8 5 3 9 4
2 | 8 5 3 9 4
2 8 | 5 3 9 4
2 5 8 | 3 9 4
2 3 5 8 | 9 4
2 3 5 8 9 | 4
2 3 4 5 8 9

Non comparison-based sorting algorithm:
a) Counting sort: sorts a word alphabetically
- O(n+d) complexity, d is the size of count array for integers

- O(n) complexity for sorting alphabets

Example of what algorithm does (for alphabets): Sort BAAD alphabetically
Create a list of size 26, each letter corresponds to each letter of the alphabet
A List[0] = 2
B List[1] = 1
C List[2] = 0
D List[3] = 1
….

For x in list
 Append character list[x] number of times

Output: AABD

b) Radix sort: O(MN) complexity, N is number of words, M is the length of each word

Sorts multiple words alphabetically.

Example = CAT, ARC, TAC, ART
Example of what the algorithm does:

Sort on third column
TAC
ARC
ART
CAT

Sort on second column
TAC
CAT
ARC
ART

Sort on first column
ARC
ART
CAT
TAC

Final sorted alphabetical list is thus: ART, ARC, CAT, TAC

	Week 1:
	Week 2:
	Comparison based sorting algorithms;
	Non comparison-based sorting algorithm:

