
I.	Introduction	2
II.	Site investigations	5
III.	Fluid flow and Darcy's Flow	13
IV.	Flow net fundamental	19
V.	Measurement of Hydraulic Conductivity	22
VI.	Type of Slides:	28
VII.	Method of slices:	34
VIII.	Embankment dam	38
IX.	Case Study	43
Х.	Numerical Modeling	46

I. Introduction

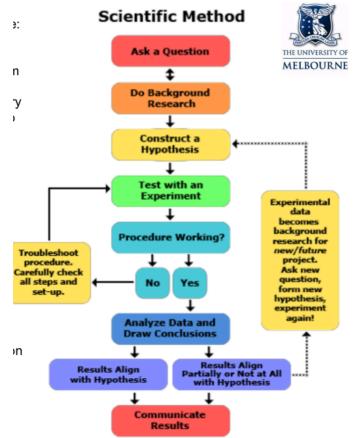
- 1. The shallow subsurface
 - Soil and bedrock (sedimentary, igneous, metamorphic)
 - Thin layer of poorly indurated materials on a more-or-less solid base: very different mechanical and fluid flow properties
 - Soil properties vary dramatically over year.
- 2. Role of geotechnical engineer
 - Site characterization: stability, durability, and prediction of side effect of engineering measure
 - Risk assessment: earthquakes, landslides, sinkholes, liquefaction, debris flows, rock falls, ...
 - Construction/restoration
 - Water capture and storage/flood control
 - Energy extraction and storage
 - Sustainability and environmental impact
 - Design and implementation of embankment, tunnels, dikes & levees, channels, reservoirs, landfills,
 - Monitoring and maintenance of engineered system
 - Improvement of existing infrastructure
 - Modelling and simulation, forecasting, what-if? Uncertainty analysis.

3. Simulation Process and Terminology

- Conceptual model
- Discretisation and code
- Code verification (benchmarks based on performance criteria)
- **Domain** of applicability
- Specific model: set-up, calibration, validation, simulation, analysis, confirmation.

4. Simulation vs physical experiment

Physical experiments				Numerical simulation				
•	<mark>Limits</mark>	on	<mark>complexity</mark>	(limits of	•	Complete	<mark>e</mark> observab	ility
	observability)			•	<mark>Extreme</mark>	<mark>xtreme</mark> conditions		


 Hidden properties 	Progressive reduction is possible		
 Extreme conditions cannot be 	Limit:		
modeled.	 Inaccurate representation of 		
 Non-uniqueness of effects 	process		
 Interpretability (turn off) 	 Linearization of non-linear 		
 Scaling issues 	phenomena		
	 Round-off and truncation errors 		
	 Discretization dependent 		
	behaviour		

5. IDEAL Framework

- Identify: the root cause
- Define: express problem in quantitative technical terms, employing mathematical, logical framework
- Explore: a portfolio of options to solve problem
- Act: on your plan
- Lean: evaluated your methodology, experiment conducted,...

6. Scientific Method

- Ask a question
- Do a Background Research
- Construct a hypothesis
- Test with an experiment
- Analyzed your data and draw a conclusion
- Communicate your result

Laboratory note book: throughout the process, the scientist keeps a journal containing all of important ideas and information. This journal is a laboratory note.

Seepage Force, Quicksand and control seepage

1. Effective stress

Total stress:
$$\sigma = \frac{P}{A}$$

$$P = \sum_{\sigma} N' + uA$$
$$\sigma = \sigma' + u$$

 $\sigma' = \frac{\sum N'}{A}$

- 2. Stress in soils
 - Pore water pressure: $u = \rho_w gh = \gamma_w h$
 - Total vertical stress: $\sigma_v = \rho g h = \gamma h$
 - Effective vertical stress: $\sigma'_V = \sigma u$
 - Effective horizontal stress: $\sigma'_h = K_0 \sigma_V'$
 - *K_o* coefficient of lateral earth pressure at rest
- 3. Stress in soils

	Hydrostatic conditions	Downward Seepage	Upward Seepage
$i = \frac{\Delta h}{H_s}$	H _w T H _w T H _s Filter screen	H _a H _a Filter screen	Ah H H H H H H H H H H H H H H H H H H H
Total head	$h_b = H_w + z = \frac{u_b}{\gamma_w}$	$h_b = H_w + z - iz = \frac{u_b}{\gamma_w}$	$h_b = H_w + z + iz = \frac{u_b}{\gamma_w}$
PWP	$u_b = (H_w + z)\gamma_w$	$u_b = (H_w + z - iz)\gamma_w$	$u_b = (H_w + z + iz)\gamma_w$
Total	$\sigma_{v,b} = \gamma_{sat}z + H_w \gamma_W$	$\sigma_{v,b} = \gamma_{sat} z + H_w \gamma_W$	$\sigma_{v,b} = \gamma_{sat} z + H_w \gamma_W$
stress			
Eff	$\sigma'_{v} = z(\gamma_{sat} - \gamma_{w})$	$\sigma'_{v,b} = z(\gamma_{sat} - \gamma_w) + iz\gamma_w$	$\sigma'_{v,b} = z(\gamma_{sat} - \gamma_w) - iz\gamma_w$
stress			