Molecules to Malady 2018 #### B Cell Module | PID | >350 rare chronic disorders • produce normal immune response impaired • recurrent/severe/unusual/persistent/run-in-familiy infections • not caused by other diseases/treatments/toxins (=2°) • mostly genetic disorders - monogenetic usually • most diagnosed <1 yr old - can affect any age/gender - ↑ early developmental stage affected ⇒> ↑ severe/younger children affected | | |-----------------------------------|--|---| | Antibody Deficiencies | humoral immunity lost (some/completely) cellular immunity intact include XLA (X-linked agammaglobulinaemia) CVID (common variable immunodeficiency) HIGM (hyper IgM syndromes) | Majority of PID is
antibody disorders | | CID (Combined Immunodeficiencies) | humoral and cellular immunity lost include SCID (severe CID) | CD4 T cells help B cells Defects in T cells only can be SCID | | Treatment of PID | depends on severity of PID 1) most severe forms, SCID, XLA => replace the whole immune system using HSCT/BMT/PBSC/UCST gene therapy 2) some Ab exist, HIGM, CVID, XLP => replace Ab using IVIG/SCIG HSCT/gene therapy require immunosuppression to prevent GVHD (Graft vs Host Disease) | IVIG • pooled human sera (>100) • broad-spectrum, all IgG subclasses • 400~600 mg/Kg/month • 2~4 hrs • 5g/L at trough SCIG • wk/2wk • abdomen, thigh, f.arm • 100~150 mg/Kg • no adverse • avoid peak/trough | | SCID | fatal PID with T and B cell function lost recurrent viral/fungal/bacterial infections – lethal early 20 genes account for 90% SCID cases | 1:200,000 birth
worldwide (NBS suggest
1:50,000) 0~6 babies in Australia
per year | |------------|---|--| | SCID Genes | ADA (encode adenosine deaminase) – no T/B/NK DCLRE1C (encode RAG1/2, Artemis) – no T/B IL2RG/JAK3 (encode γc chain) – no T/NK IL7R (encode IL7Rα) – no T | IL2RG/JAK3 SCID is X-linked γc chain is common cytokine receptor | #### Rheumatoid Arthritis Module | | Tioualo | | |-----------------------------------|--|---| | Arthritis | umbrella term that denotes joint diseases >>100 types (95% due to osteoarthritis, RA, gout) prevalence 9% in Australia - ↑ with age - ↑ in indigenous people | • <1% under 35yr, 35% over
80yr | | Rheumatoid Arthritis | chronic inflammatory autoimmune disease of unknown cause • articular manifestations dominant feature • systemic extra-articular complications • progressive disability • reduced life expectancy (-10yr) • 1:1000 max incidence per year • 0.5~1% prevalence globally • in adult Caucasian popn • 2~3 times ↑ common in female • peak age of onset 40~70 | significant socioeconomic costs associated with RA corresponding to menopausal stage | | Clinical Features of RA | | | | Articular
Manifestations | symmetricalsmall joints usually affectedMCP, PIP, wrist, knee, MTPcharacteristic deformities | larger joints affected
means longer symptoms | | Characteristic Deformities (Hand) | radial (lateral) wrist deviation MCP swelling/subluxation/ulnar deviation Z deformity = fixed flex/sublex of MCP + fixed hyperext of PIP Boutonniere = fixed flex of PIP + fixed hyperext of DIP extensor tendon (dorsal) rupture with inflamm -> force protrusion of PIP Swan neck = fixed h.ext of PIP + fixed flex of DIP flexor tendon (palmar) rupture & slide sideways lateral bands sublux dorsalling at PIP tendon shortening at DIP PIP fusiform swelling | | ### Muscular Dystrophy Module | Muscle | Shortening of muscles moves joints Muscle tissue enables motion and maintenance of posture Muscle tissue also generates heat | | |------------------------------------|--|---| | Terminology | Muscle tissue also generates heat Myopathies = disorders of muscle Congenital myopathies = genetic disorders of muscle contractile apparatus characteristic pathological changes are static Muscular dystrophies = genetic disorders of muscle supporting structures usually progressive pathology characterised by degeneration & regeneration of muscle fibres | | | Skeletal Muscle | attached to bone striated vary in function & structure variable colour depending on myoglobin content variable speed in contraction variable metabolic processes | Fibres contain alternating
light & dark bands
perpendicular to their
long axes | | Structure of Skeletal
Muscle | Muscle belly is made up of muscle fibres Muscle fibre consists of sarcolemma contains myofibrils and sarcoplasm multinuclear grouped into fasciculi Fibres within each fasciculi are surrounded by endomysium Each fasciculus is surrounded by perimysium | Myofibrils and sarcoplasm
make up the contractile
components of muscle | | Substructure of
Skeletal Muscle | Each myofibril is divided into sacromeres Sacromere is the smallest contractile unit I band is aligned actin filaments A band is aligned myosin and actin filaments | Sacromeres are repeated
along the length of
muscle fibres | | Myofibrils | have sarcoplasm => contains glycogen, fat particles, enzymes & mitochondria have 2 myofilaments running parallel => actin & myosin Myosin has tiny globular heads => form cross-bridges & muscle action Actin, tropomyosin and troponin are thin filaments | | | Muscle Contraction | occurs by sliding filaments At rest tropomyosin covers myosin binding sites (of actin) Ca+ binds to troponin => alters tropomyosin structure Myosin heads bind to actin => forms cross-bridges ADP & Pi are released => generates sliding movement of actin New ATP binds to myosin head & cross-bridge breaks | | | | is caused by release of ACh by motor neurons ACh binds to nACh receptor => causes Na+ i initation in muscle Muscle AP travels along T tubules & reach allow Ca+ flow into sacromere | · | ### Cystic Fibrosis Module | Introduction (Lecture 1) | 1) | Common inherited disorder | |--------------------------|----|--| | | 2) | Variable severity | | | 3) | No cure | | | 4) | Treatment increase lifespan | | | 5) | Death due to respiratory/cardiac complications | | | 6) | Multiple system affected | | | 7) | All affected by production of excessively thick & dehydrated mucus | | | 8) | Failure of salt (Cl-) and water transport by epithelial cells lining ducts | | CETD Cono | Gana responsible for CE identified by | . Cono namos ano | | |---|--|---|--| | <u>CFTR Gene</u> | Gene responsible for CF identified by Positional cloning Fundamental defect => cAMP-mediated regulation of CI- transport | Gene names are written in italics | | | | - Linkage analysis => map to chromosome 7q31.2 | The ion channel protein coded by CFTF | | | | CFTR gene 190kb DNA, 27 exons Codes for an ion channel protein | = CF transmembrane
conductance regulator
= CFTR protein | | | CFTR Protein | 170kD, 1480 amino acids Member of ABC superfamily Gated chloride channel protein Ions diffuse down concentration gradient Regulated by cAMP-dependent phosphorylation Expressed in epithelial cells (apical membrane) in wide variety of tissues | ABC = ATP-binding
cassette superfamily
of membrane
transporters | | | CFTR Protein Function | Regulates anion (mostly Cl- and HCO3-) transport Regulates mucociliary clearance Have a role in immunity and inflammation | | | | <u>CFTR Protein</u>
<u>Structure</u> | Five domain 1) Two membrane spanning domains (MSD 1 and 2 2) Two nucleotide-binding domains (NBD 1 and 2) 3) Regulatory (R) domain => phosphorylated by cA kinase | => bind & hydrolyse ATP | | | | Activation of CFTR channel relies on phosphorylation Closed state = de-phosphorylated state One ATP molecule is permanently bound 2nd ATP binding trigger opening of the channel via phosphorylation of NBD CFTR protein interacts with other proteins C-terminal anchored to cytoskeleton & kept close to other proteins Which influence CFTR functions such as: | | | | | | | | | | regulation of other chann signal transduction localisation at apical plasm | els | | # Pandemics Module <1> HIV | Retrovirus of Lentiviridae Family | 3 main genes: gag, pol, env plus regulatory proteins: tat, rev, vpr, vpu, vif, nef gag: structural proteins p17 matrix => icosahedral p24 capsid => protection p7 nucleocapsid => inside nucleus, coat RNA pol: viral enzymes p66/51 RT (reverse transcriptase) p32 integrase p11 protease env: envelope glycoproteins gp120 => cell attachment gp41 => transmemb fusion domain | Regulatory proteins allow few tricks for virus Retrovirus: "backward" RNA -> DNA These viruses circulated for centuries and a lot of animals affected (sheep, horse, cow, cat, primates) Cross-species transmission of HIV occured in 1930s HIV-1 = SIVcpz (chimpanzee) HIV-2 = SIVsm (sooty mangabey) | |--------------------------------------|--|--| | 8 Things to Know for
Lentiviruses | slow disease - long-lived 80~130 nm size (small) capsid symmetry: icosahedral envelope diploid linear 10kb +ve sense ssRNA replicate in nucleus assemble in cytoplasm at memb AIDS, neurologic, arthritis, pnuemonia | Diploid means two copies
of single stranded RNA | | HIV Clades | a lot of HIV strains exist strains/clade determined by similarity of seq/gen different strains in different regions of the world which is why making vaccine is difficult | | | Life Cycle of HIV | gp120 bind CD4 => conformation change of gp120 gp120 bind chemokine co-receptor gp41 allow fusion RNA enter RT produce DNA and DNA integrates into host genome DNA transcription -> RNA -> translation assembly, budding, maturation, new virion! virus cross mucosa memb within hours local expansion within 4 days (infected T cells) virus go to lymph node/blood within weeks | Integration is common for retrovirus Integration is why we don't have cure for HIV ("We live with them and their DNA") | Neuro-degeneration (ND) Module Lecture 1 Introduction: 8 Things to Remember | | M. 6 Hilligs to Remember | 6:1.6.1 | | |--|--|---|--| | <1> Single Etiology
Model Doesn't Work | Make model We can model only aspects of ND Mutation in SOD1 is associated with familial MND but Mutation in SOD1 affects sensory neurons in dogs The difference in gene expression between human & dog sensory neurons can point to key mechanisms | Risk factors => disease onset => active disease => failed organ MND is motor neuron disease | | | <2> Risk and End Stages | s Are Different Entities | | | | <3> What Constitutes "x | " Disease Is Constantly Changing | | | | <4> Clinical Signs Tell You the Anatomical Pathology | Phenotype tells which brain region is injured & hence which cells are injured Increased reflexes & weakness/paralyses indicate that upper motor neurons are affected Loss of reflexes & fasciculation indicate lower motor neurons | Different cell types are
due to gene expression
which gives biochemistry,
morphology & energy
demands | | | <5> Similar Cells Have Similar Disease Susceptibility | Similar neurons have common embryology/transmitters/morphology/gene expression => thus similar risk to diseases | | | | <6> Each ND Affects a System of Cells | Both PD and AD have dementia but dementia of PD have frontal cortex/executive dementia attention, executive function & impulsivity dementia of AD have posterior cortex/ammestic dementia attention, memory & language 15% of PD have amnestic dementia & increased Aβ levels | | | | <7> Each ND Tends to
Have a Specific
Misbehaving Protein | AD (Alzheimer) -> Aβ PD (Parkinsons) -> α-synuclein dementia with LBody -> α-synuclein progressive supranvelear palsy -> Tau fronto-temporal dementia -> Tau & TDP43 | We can say they are
"signiture proteins" | | | <8> ND Progresses | All NDs spread to neighbouring neurons Infantile ND causes severe gene abnormal Young onset ND causes less severe gene a expression of late onset genes Late onset ND is the conventionally held N features: have energetic component inclusion formation: autophagy, m disturbance axon transport problems & terminal | ibnormalities or increased ND and have common isfolding & lysosome | |