Lecture 2: Issues with WACC and Capital Structure Policy

Weighted Average Cost of Capital (WACC)

Cost of capital/ Required rate of return

- Projects have to earn at least a benchmark rate of return
 - Benchmark return for riskier projects > safer ones

WACC formula

$$WACC = k' = k_d \left(1 - t_e\right) \left(\frac{D}{V}\right) + k_e \left(\frac{E}{V}\right)$$

where k_d - cost of debt, k_e - cost of equity, t_e - effective company tax rate, D, E- debt & equity market values, firm value V = D + E

- If a project earns more than WACC, it will be able to satisfy both debt and equity holders
- Unlikely to be able to determine the actual WACC reduce errors by using market value

Each component of WACC

Cost of debt - k _d	 Market interest rate that the firm has to pay on its long term borrowing today = risk free rate + default spread Risk free rate = basic cost of money set by central bank Default spread = chance borrower will fail to meet obligations to pay interest and principle as promised
Effective tax rate – t _e	 (1 - t_e)k_d = tax savings associated with debt Under the imputation tax system The effective corporate rate can be lower than the statutory corporate tax rate t_e = t_c (1 - λ) Where λ is the proportion of corporate tax claimed by shareholders λ = 0 → classical tax system λ = 1 → pure imputation tax system
Cost of equity - k _e	• 2 methods to calculate k _e 1. Capital asset pricing model (CAPM) $k_e = R_f + \beta_e [E(R_M) - R_f]$
	• Stocks with higher risk (higher beta) require a high expected rate of return for investor 2. DCF approach (Gordon Growth model) $P_0 = \frac{D_1}{k_e - g} \Rightarrow k_e = \frac{D_0(1 + g)}{P_0} + g$
	D ₀ = current period dividend per share g = growth rate • Growing perpetuity formula → assume that firm's exist forever (Going concern)
Weights	Calculated using market values