ANAT2009 Lecture Notes - Lecture 1 page 2 - Lecture 2 page 2 - Lecture 3 page 4 - Lecture 4 page 6 - Lecture 5 page 7 - Lecture 6 page 10 - Lecture 7 page 12 - Lecture 8 page 16 - Lecture 9 page 18 - Lecture 10 page 22 - Lecture 11 page 24 - Lecture 12 page 28 - Lecture 13 page 29 - Lecture 14 page 32 - Lecture 15 page 34 Lecture 16 - page 38 - Lecture 17 page 39 - Lecture 18 page 41 - Lecture 19 page 42 - Lecture 20 page 45 - Lecture 21 page 46 - Lecture 22 page 48 - Lecture 23 page 50 - Lecture 24 page 52 #### Lecture 1 To be able to use anatomical nomenclature (naming of anatomical specimens - bones and muscles and their features) | <u> </u> | | |-------------|------------------------| | Term | Definition | | Superior | Towards head | | (cranial, | | | cephalic) | | | Inferior | Towards the bottom | | (caudal) | | | Anterior | Towards the front | | (ventral) | | | Posterior | Towards the back | | (dorsal) | | | Medial | Towards the midline | | Lateral | Away from the midline | | Deep | Away from the surface | | Superficial | Towards the surface | | Proximal | Towards the trunk of | | | the body | | Distal | Away from the trunk of | | | the body | To understand some basic tissues - Epithelial cover surfaces e.g. skin - Connective tissue e.g. skin, fascia, ligament, tendon, cartilage bone - Muscle skeletal, cardiac, smooth - Nervous brain and spinal cord To be able to name and describe the different types of joints - Fibrous (immoveable) e.g. between bones of the skull - <u>Cartilaginous</u> (slightly moveable) e.g. between vertebrae, in epiphyseal plates - Synovial (freely moveable) - Ball and socket e.g. shoulder, hip - Hinge e.g. knee, elbow - Saddle e.g. carpal bone and 1st metacarpal bone - Ellipsoid e.g. between radius and carpal bones of wrist - Pivot e.g. between C1 and C2, proximal radioulnar, distal radioulnar - Gliding e.g. between tarsal bones ### Lecture 2 To be able to explain the three adaptive trends which are characteristic of all primates - (1) Adaption to living in trees - Nails instead of claws large, flat, sensitive tactile pad which requires a flat nail - Free mobility of digits long and prehensile digits, opposability of fingers/toes, precision and power grip - Generalised/primitive limb structure retention of a clavicle and rotation of shoulder, rotation of wrist and radius and ulna makes the forearm flexible - Visual adaptations eye sockets face forward, fine discrimination and colour vision - Reduction in sense of smell use of touch to examine, reduction in size of snout - Trunk uprightedness preadaptation to bipedalism - (2) Maintenance of dietary variation - Retention of different types of teeth allows for unspecialised diet, teeth used to grasp and manipulate the environment - Reduction in number of teeth - (3) Large amounts of parental care invested in a very small number of offspring - Offspring learn more - · Chance of survival is high - Complex and expanded brain especially in visual and association areas To be able to describe the range and major characteristics and give examples of the major groups of primates ## **Prosimians** - Lemur - In Madagascar only - Long life span - Nails on some digits - Good eyesight - Good grasping ability - Long snout - Tarsier - Small area of SE Asia - Nocturnal - Small, large ears, small snout - More parental care - Facial expression - Larger brain - Stereoscopic vision # Old world monkeys - native to Africa/Asia - Baboon - 2 premolars - Arboreal and Quadrupedal - Prolonged gestation - Not prehensile tails - Good manipulation - Larger brain # New world monkeys - native to Americas - Spider monkey - Broad, flat noses - Retain 3 premolars - Prehensile tail # Apes - Gibbon - Smaller - Larger brain - Long gestation - Broad trunk, long limbs - No tail - Brachiate - Orangutan - Asian - Knuckle walker - Solitary - Marked sex differences - Chimp - Africa - Arboreal - Terrestrial - Knuckle walker - Not marked sex differences - Pygmy chimp - Walks upright 25% of the time - Slighter than common chimp - Larger breasts - More individual facial features - Gorilla - Largest - Enormous jaws and teeth - Marked sexual differences To be able to draw a simple evolutionary/phylogenetic tree of primates including a timeline - Allows us to draw ancestral relationships - Similarities between organisms can be based on morphology, behaviour, physiology, chromosomes, biochemistry - Best criteria for assessing the reliability of any evolutionary/phylogenetic tree for primates must be its capacity to absorb new fossil finds To use scientific nomenclature for naming of primates - Genus name begins with a capital letter - Species name begins with a small lertter - Both italicised or underlined Example: Homo sapiens, Pan troglodytes ## To gain an understanding of primate origins - Primates were the first group of placental mammals to differentiate - A very old order - Living primates = 5% of all primates that have existed (95% are extinct) - Date from cretaceous period (65 mya) in N America and N Africa - Plesiadapids and were mouse sized, fruit eaters, quadruped and not unlike living lemurs - Earliest evidence of homonioids (ancestors of apes and homonids) - Miocene 20 mya - Proconsul - Quadruped with some suspensory ability, no tail, opposable thumb, increased brain size **Lecture 3** To be able to define hominoid, hominid and hominin - Hominoid = all humans and all apes - Hominid = all modern and extinct great apes and humans and their ancestors - Hominin = humans and all their ancestors ## To be able to list what are hominin adaptations - (1) Locomotion - Trend towards bipedalism - Advantage in: spotting predators/prey, picking fruits, freeing hands, appear larger/intimidating - (2) Jaws/teeth - Parabolic dental arcade - Loss of diasterna (space between teeth) - Small incisors - · Large posterior teeth, efficient grinding - (3) Reduced jaw - Orthognathic, rather than prognathic - Due to reduction in size of teeth - (4) Increased intelligence - Increased brain size - Change in structure/organisation of brain To be able to describe the following hominins in terms of their adaptations, date and location | Hominin | Date | Location | Adaptations | Image | |--------------------------------------|----------------------|-----------------------------|---|-------| | Sahelanthropus | 6-7
mya. | Chad
(Central
Africa) | Small brain Sloping face, elongated skull Prominent brow ridges Small canine teeth Short middle part of face Foramen magnum underneath the skull = bipedal | | | Orrorin | 5.8-6.2
mya | E Africa | Chimp size Small teeth, thick enamel Long neck of femur (bipedalism) | | | Ardipethecus | 4.4 mya | E Africa | Grasping big toes (quadrupedal in trees) Hands adapted to arboreal life Reduced canines Small brain Bipedal on ground | | | Australopithecus
afarensis (Lucy) | 2.95-
3.85
mya | E Africa | Reach adulthood early = less time for parental guidance Flat nose Projecting lower jaw, small canines, large molars Small brain Long, strong arms and curved fingers Adapted for walking upright | | | Australopithecus africanus | 2.1-3.3
mya | S Africa | Rounder cranium, sloping face with a larger brain Smaller teeth Long arms Pelvis, femur and foot bones indicate bipedalism Shoulder and hand bones indicate they were adapted for climbing | | |----------------------------|----------------|----------|---|--| | Paranthropus robustus | 1.2-1.8
mya | S Africa | Robust Large jaw/teeth Large cheek bones and wide face Large sagittal crest (anchor muscles) Moderate sexual dimorphism Probably not ancestral to humans | | | Paranthropus
boisei | 1.2-2.3
mya | E Africa | Adaptations for heavy chewing Strong sagittal crest Large teeth Flaring cheek bones = wide face Flatter, bigger-brained skull Marked sexual dimorphism Probably not ancestral to humans | | # Lecture 4 Distinguishing features of Homo - Large brain relative to body size - Small teeth - Bipedal - Manufacture tools - Slow development - Foramen magnum under the skull - Prominent nose - Short base of skull - Presence of chin | Name | Time | Location | Details | Image | |-------------------------------------|-------------------------|--------------------------------------|---|-------| | Homo habilis | 2.4-1.4
mya. | East and
south
Africa | Larger brain Smaller face and teeth Long arms | | | Homo
erectus
"Turkana
Boy" | 1.89m-
140 000
ya | N, E, S
Africa
W and E
Asia | Larger brain Teeth smaller Prominent brow ridges Made tools Elongated legs, shorter arms Adaptations to living on the ground Growth rate similar to ape | | | Homo
floriensis
"Hobbit" | 50-100
000 ya | Asia | Short with a small head and brain, large feet Large teeth Shrugged forward shoulders No chin Receding hair line May be a result of island dwarfism (long term isolation) | | | Homo
Neanderthals | 49– 400
000 ya | Europe
and SW
Asia | Large middle part of face Angled cheek bones with a large nose Short, stocky bodies (for cold) Made and used tools (skilled hunters) Sophisticated behaviours | | |----------------------|----------------------------|--|---|--------------------| | Homo
sapiens | 300 000
ya –
present | Evolved in
Africa,
now world
wide | Lighter build Very large brains which vary in size Flat and near vertical forehead Less heavy brow ridges Less prognathic Jaws less developed with smaller teeth | YOU
ARE
HERE | ## Lecture 5 Explain why the pectoral girdle and shoulder joint are so mobile - Main function is manipulation - Has many mobile joints - Pectoral girdle = clavicle and scapulae - Only bony connection of pectoral girdle to the axial skeleton is the sternoclavicular joint - Scapula is very mobile - Humerus articulates with the scapula at the glenohumeral joint (shoulder) and this is also very mobile - Functions: locomotion, climbing, manipulation, throwing, balance/support Identify and be able to label features on drawings of the clavicle, scapula and humerus # Clavicle