CBMS331 - Molecular and Medical Biotechnology Topics; Toolbox **Genetic Engineering** Biotech pipeline **Protein Secretion** **Protein Engineering** Microbes as Factories Fluorescence Microscopy Transgenic Plants Transgenic Animals Flow Cytometry **Biotech Scale** Microfluidics Glycomics **Cancer Nanomedicine** **Engineering Nanoparticles** Bioinformatics **DNA** in Forensics Biopharmaceuticals ## Toolbox . To make a recombinant protein; genes, promoter, host, vector, cultivation process. Gene isolation via PCR; Touchdown – cools annealing for best fit. Degenerate – varying primers via conserved motifs. Nested – reamplification via second PCR. RT – rna to cdna. Quantitative – accurate quantification. New host may not recognise the codons, so modification may be necessary. Identify codons with greatest difference, especially at 3rd position, and figure out how to change them. Orthogonal system is one that doesn't interfere with the host's system. ## Reconfiguration checklist; - Modify or harmonise codon usage - Assess existing or incorporate new restriction sites for in-frame cloning - o Identify and replace problematic sequence regions (e.g. loops and repetitive sequences) - o Identify, and then modify potential PTM sites as required (e.g. proteolytic cleavage, N-linked glycosylation) - Identify and add or replace potential organelle targeting sites (e.g. ER retention motif H/KDEL, membrane binding motifs) - \circ Add a screening or purification tag if desired (e.g. GFP, HIS, FLAG $^{\circ}$) - o Fuse to an endogenous highly secreted protein carrier - Look at the 3D structure if available for potential problem areas (e.g. exposed loops) ## Comparison of cloning vectors; | Vector type | Max insert (kb) | Applications | Limitations | |--|-------------------------------|--|---| | Bacterial plasmid (e.g. puc) | 6-12 | Cloning and sequencing | Small insert size, limited expression of proteins, replication restricted in bacteria, copy number problems | | Bacteriophage
(linear, e.g. lambda) | ~25 | Gene libraries
(genomic and cDNA) | Packaging, host replication | | Cosmid (circular) | ~35 | Cloning of large DNA fragments, genomic and cDNA libraries | Phage packaging, cannot replicate in mammalian cells, restricted protein expression | | Bacterial Artificial
Chromosome (BAC)
circular | ~300 | Cloning of large DNA fragments and genomic libraries | Replication restricted to bacteria,
not suitable for protein expression
(used for gene cataloguing) | | Yeast <u>Artifical</u>
Chromosome (YAC)
circular | ~200-1000 | Cloning of large DNA fragments and genomic libraries | Restricted to yeast application (centromeres, telomeres) | | Ti Vector | Depends on the type of vector | Gene transfer into plants | Main use in plant cells, large size, complicated to manipulate | | Shuttle vectors | ~25 | Can function in two species, e.g. E. coli and yeast | Species-specific replication origins (and promoters) | Gateway cloning; allows the gene to be cloned into multiple kinds of backbones without loss of the gene. Cloning options; using restriction enzymes, in vivo homologous recombination, yeast assembly, Gibson assembly. A good vector has; effective promoter, secretion signal (optional), flexible multicloning site, terminator, transformation selection marker (antibiotics), transformation into host should be easy.