Factors Affecting Microorganism Growth & Survival

Intrinsic Factors

Factors of the food itself, i.e. nutrients, growth factors, inhibitors, water activity, pH, and redox potential.

- Nutrients microbes take nutrients rom their immediate surroundings, the microbes in food are mixed and will have different nutritional requirements.
 - polymeric carbohydrates are harder for bacteria to digest, but moulds are more capable.
 - sometimes the death of microbes release enzymes that breakdown the food.
 - Proteins many microbes have protease, microbial cells require short peptides and amino acids.
 - protein metabolism can release 'off' odours and toxins such as histamine.
 - Carbohydrates metabolised by microbes as a carbon and energy source.
 - Lipids some microbes can metabolise lipids for energy, but not a preferred substrate.
 - cell lysis can release intracellular lipase that cause spoilage.
 - Vitamins/Minerals most microbes can produce these, therefore not a restriction.

Growth Factors/Inhibitors – naturally present substances that stimulate or inhibit microbe growth.

- inhibitors are more common than growth factors, e.g. lysozyme in egg white that break down peptidoglycan.
- Water Activity (A_w) measure of available water for biological functions (i.e. free water). It does not include water bound by ions/polymers as microbes can't use it.
 - ratio of water vapour pressure of the food and water vapour pressure of pure water.
 - most microbes can't grow below $A_w = 0.6$
 - most bacteria can't grow below $A_w = 0.9$
 - Osmotolerant, Xerotolerant, and Halotolerant microbes can grow at low Aw.
- pH optimum pH for microbes: bacteria at pH 6 8; yeasts at pH 4.5 6; filamentous fungi at pH 3.5 4.
 - most foods are acidic neutral pH.
 - pH of post-slaughter meat decreases (to ~5.6) due to fermentation of muscle glycogen to lactate.
- Redox Potential (E_h) redox potentials affect microbe growth in that microbial metabolism depends on redox potentials, e.g. anaerobes are inhibited by high E_h due to high O_2 / low pH.
 - E_h is affected by O_2 and pH: $↑O_2 = ↑E_h$; ↓pH = $↑E_h$
 - microbial growth decreases E_h as they use up O_2 .
 - fresh foods usually have lower E_h than processed foods.

© BZW 2018 4

Extrinsic Factors

External environmental factors, e.g. temperature, humidity, and gaseous atmosphere.

Temperature – directly affects rate of biochemical reactions in microbes.

- There are different microbe temperature groups with different optimum growth temperatures:
 - thermophiles optimum 55°C; thermoduric microbes can survive pasteurisation
 - mesophiles optimum 35°C
 - psychrophiles optimum 15°C; psychoduric microbes can survive refrigeration

Humidity – affects A_w due to the moisture in the air.

Gaseous Atmosphere – gasses in air affects Eh, e.g. more oxygen in air increases Eh.

- method of microbe inhibition is increase CO₂ around food as CO₂ inhibits microbe growth due to it dissolving to form a weak acid.

Microbial Metabolism

Heterotrophs – use organic carbon compounds for growth.

Chemoorganotrophs – use organic compounds as electron donors for energy.

Microbes can produce energy in 3 ways:

- Aerobic respiration using oxygen
- Anaerobic respiration using NO₃- or SO₄²-
- Fermentation without oxygen (slower growth)

Yeast fermentation – produced CO₂ and ethanol

Lactic acid bacteria (LAB) fermentation - lactic acid

Food Atmosphere Modification

Modified Atmosphere Packaging (MAP) – mixture of CO₂, O₂, and N₂; ratios vary. – CO₂ inhibits growth; N₂ slows growth

A problem with MAP is that the gas composition can change time due to product/microbial respiration, gas exchange, dissolution of CO_2 , etc. This will affect the inhibitory effect.

Controlled Atmosphere Packaging (CAP) – similar to MAP, but gas environment is controlled to prevent any changes that may occur like in MAP.

- usually requires special containers or silos.

Vacuum Packing (VP) – removal of O₂ in product environment, preventing fast growing aerobes.

- has little effect on anaerobes and facultative anaerobes.

Active Packaging (AP) – components added into packaging that interact with the product atmosphere, e.g. controls moisture, gases, etc., to extend product shelf life.

- example is the pads at the bottom of packaged fresh meats, they release CO₂ when in contact with moisture.

© BZW 2018 5