EXPERIMENTAL DESIGN AND ANALYSIS 2017 -SUMMARY NOTES-

IMPORTANT NOTATION	PG. 2
TOPIC 1: THE SCIENTIFIC METHOD IN PSYCHOLOGY	PG. 4
TOPIC 2: RESEARCH HYPOTHESES	PG. 6
TOPIC 3: BASIC STATISTICAL CONCEPTS	PG. 9
TOPIC 4: THE NORMAL DISTRIBUTION AND STANDARDISED SCORES	PG. 14
TOPIC 5: HYPOTHESIS TESTING	PG. 16
TOPIC 6: ISSUES ASSOCIATED WITH HYPOTHESIS TESTING	PG. 19
TOPIC 7: INDEPENDENT AND DEPENDENT VARIABLES	PG. 20
TOPIC 8: INTERNAL AND EXTERNAL VALIDITY	PG. 22
TOPIC 9: THREATS TO INTERNAL AND EXTERNAL VALIDITY	PG. 23
TOPIC 10: UNANTICIPATED INFLUENCES IN EXPERIMENTATION	PG. 25
TOPIC 11: ONE SAMPLE T-TEST	PG. 27
TOPIC 12: DESIGNING AND CONDUCTING EXPERIMENTS WITH TWO IV LEVELS	PG. 34
TOPIC 13: DEPENDENT SAMPLES T-TEST	PG. 38
TOPIC 14: INDEPENDENT SAMPLES T-TEST	PG. 42
TOPIC 15: DESIGNING AND CONDUCTING EXPERIMENTS WITH MORE THAN 2 GROUPS	PG. 49
TOPIC 16: ONE-WAY ANALYSIS OF VARIANCE (BETWEEN) OR ANOVA	pg. 51
TOPIC 17: ONE-WAY ANALYSIS OF VARIANCE WITHIN	PG. 65
TOPIC 18: NON-PARAMETRIC EQUIVALENTS TO ANOVA	PG. 68

IMPORTANT NOTATION:

 X_i = refers to any values. The i refers to the number of the value. $\,\circ\,\,$ So if 27 is the 10th score this would be notated as= X_{10} \sum = 'the sum of' $\sum X_i$ = the sum of all the values in the sample. • E.g. 21, 27, 34, 34, 39 would be $\sum X_i = \sum (21+27+34+39)=$ $\sum X_i^2$ = square each of the values in the sample and then sum them • E.g. with the numbers above $\sum X_i^2 = \sum (21^2 + 27^2 + 34^2 + 34^2 + 39^2)$ $(\sum X_i)^2$ = sum each of the values and then square the result N= number of scores \overline{X} = sample mean $\mu_{=\text{population mean}}$ σ^2 = Population variance S^2 = Sample variance $S_{\rm = sample \ standard \ deviation}$ $\sigma = {}_{\rm Population \ standard \ deviation}$ CV = coefficient of variation $\sigma_{\overline{X}}$ =Standard Error of Mean (SEM) df= degrees of freedom a =probability of Type 1 error $\beta_{\rm = probability of Type 2 error}$ k= number of samples \overline{D} = average of the difference scores (in dependent-samples t-test)

d= cohen's d- measure of the effect size

Z-value= value from one-sample test (when we know population SD)

t-value= value from one-sample t-test (when we don't know population SD)

U-value= Mann-whitney U test

F-value= value for one-way between anova

H-value= Kruskal-wallis one-way anova (parametric equivalent between anova)

F-score= value for parametric one-way within anova

MS_{bet}= mean square between MS_{error}= mean square error

SS_{total}= sum of squares total SS_{bet}= sum of squares between

SS_{error}= sum of squares error

TOPIC 1: THE SCIENTIFIC METHOD IN PSYCHOLOGY

- The basis of Psychology is to determine reasons behind human behaviour
- This is achieved by using methods by more traditional sciences such as: physics, to understand behaviour.
- 'Science' involves establishing relationships between an event and a set of preceding circumstances
- The scientific method involves:
 - I. <u>Objectivity</u>- not letting biases affect your interpretation of a finding
 - II. <u>Confirmation of findings</u> (e.g., replication- repeating a study should achieve the same outcome)
 - III. <u>Self-correction</u> –(ability to alter conclusions- must be able to adapt and alter conclusion if another study showing a different outcome comes out)
 - IV. <u>Control</u>
- <u>The experimental method</u>: when we suspect a relationship between events, we attempt to examine such a relationship by manipulating the preceding circumstances, and observing the change in the final event.
 - In the scientific method, we examine all possible preceding circumstances involved, while in the experimental method we take one or a few of the circumstances involved and concentrate on them.
- <u>A 'cause and effect' relationship=</u> control one circumstance and watch how this affects an outcome.
- A <u>variable</u> is a quality which can take on many different values. These data values are quantitative (put numbers to the different states of the variable).
 - Variables can be:
 - I. **Independent:** These are the presumed 'circumstances' manipulated to observe the effect on behaviour. These are 'independent' of behaviour.
 - II. **Dependent:** This is the behaviour of the participant or the outcome/event we observe. These variables are affected by the independent variable.
- The <u>hypothesis</u> is a statement of the relationship between the dependent and independent variable.
 - E.g. 'as you get older, you grow taller!'- this is a hypothesis where age is the independent variable and height is the dependent variable. Height is dependent on weight.
- In an **experiment** we are only testing the relationship between the dependent and independent variable. All other circumstances are controlled.
 - Variables could be health of participants, occupation of participants, background of participants.
 - If they affect the results, then they are **extraneous variables**.

- What makes Psychology a 'difficult' science to practice?
- 1. The many possible circumstances concurrent to, or preceding a behaviour
- 2. The differences inherent in an individual-
 - A form of **'preceding circumstance'** which mean no two people act in the same way.
 - If you only used one person in the experiment, you would not be able to trust the finding.
 - \circ $\;$ This is WHY data is collected from many participants.