

Genetics and Genomics (GEGE2X01)

Course Notes

Anonymous

University of Sydney 2018

~

Contents

Lectures

	Classical and Mendelian genetics	3
	Variations in observed phenotype and genotype	10
	Sex linkage and determination	15
	Cytogenetics	20
	Linkage and gene mapping	28
	Mutation and repair	35
	Mutation and phenotypic variation	40
	Horizontal gene transfer	45
	Genetic analysis	54
	Introduction to population genetics	61
	Forces that change equilibrium	64
	Inbreeding, relatedness and conservation genetics	67
	Quantitative genetics	71
	Gene drives	74
	Introduction to genomics	76
	Bioinformatics and structural genomics	79
	Comparative and evolutionary genomics	82
r	acticals (very brief)	
	Genes, alleles and mutations	88
	Genetic analysis	88
	Population genetics of Apis	88
	Bioinformatics and genomics	88

Linkage and gene mapping

- Genetic mapping links observable phenotypes to genotypes.
- Linkage and genetic mapping leads to:
 - o Identifying genes and biological processes underlying inherited traits;
 - Functional genomics to discover why genes cause phenotypes;
 - Genetic tests for diseases and potential cures; and
 - A scaffold to inform the assembly of whole genome sequences.
- Linked genes are located close enough together on the same chromosome that they are often inherited together.
 - o Also called syntenic genes.
 - O Genes far apart on the same chromosome can be unlinked.
 - o In the diagram below for example, a-b and d-e could be linked:

- Fun fact: one of the first genetic maps was created for Drosophila.
- Linkage maps show relative locations, not physical locations.
 - Like a railway map, not an absolute map like a street directory.
 - The challenge is connecting linkage and absolute maps.
- Recombination is when alleles of linked genes can separate.
 - Also called crossing over.
 - Occurs during prophase I of meiosis.
 - O Between chromatids of homologous chromosomes:

- Ab and aB are referred to as parental. AB and ab are referred to as recombinant.
- Crossing over occurs at the chiasma (plural chiasmata).
- Determination of genetic linkage:
 - Unlinked genes assort independently according to Mendelian ratios.
 For a dihybrid cross, this gives a 9:3:3:1 ratio.
 For a test cross, this gives a 1:1:1 ratio.

GEGE2X01 Course Notes 28

Unlinked genes:

RrYy x rryy
round yellow wrinkled green

Test cross offspring:

PpLI x pplI
purple long red short

PpLI x pplI
purple

Linked genes don't assort independently:

In this example, purple-long and red-short are linked.

• Recombination frequency is a measure of genetic distance.

$$r = \frac{\text{# of recombinant offspring}}{\text{total # of offspring}}$$

- \circ A recombination frequency of 0.01 = 1 map unit (m.u.), also known as centimorgans (cM).
- Recombination frequency can be used to determine arrangement of genes along a chromosome.
 - Recombination is more likely when genes are far apart, therefore leading to more recombinant progeny.
 - O Genes greater than 50 m.u. apart are effectively unlinked.
- Example 1: Test cross:

0

^{*}not always is crossed-out because often this combination of alleles is lethal.

GEGE2X01 Course Notes

0

• When putting together a linkage map, the recombination frequencies usually add up.

• Example 2: Three-gene test cross to determine recombination frequency between B and C.

	Progeny		Ratio	
	Phenotype	Number	Exped	t Observed
**	+ + +	502	1	most
	pr + +	5	1	least
	+ vg +	57	1	intermediate
	pr vg +	36	1	intermediate
*	+ + bl	34	1	intermediate
**	pr + bl	65	1	intermediate
*	+ vg bl	3	1	least
*	pr vg bl	482	1	most
0.53	Total	1184		

- o First step: determine the parental and recombinant types:
 - Parental are those in the original cross: + + + and pr vg bl.

 Most of the recombinants types have one crossing over event. This happens less often than parental types.

