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1 Introduction and Probability Theory

An important hypothesis of Machine Learning

Pre-existing data repositories contain a lot of potentially valuable knowledge

(Semi-) automatic extraction of valid, novel, useful and comprehensible knowledge
- in the form of rules, regularities, patterns, constraints or models - from arbitrary sets of
data.

The goal is to develop efficient and useful algorithm.

Contents this subject covers:
Foundations of statistical learning, linear models, non-linear bases, kernel approaches, neural net-
works, Bayesian learning, probabilistic graphical models (Bayes Nets, Markov Random Fields),
cluster analysis, dimensionality reduction, regularization and model selection

1.1 Machine Learning Basics

1.1.1 Terminologies

e Instance: measurements about individual entities/objects: e.g. a loan application (data

points)

e Attribute (Feature, explanatory variable): component of the instances: e.g. the appli-

cant’s salary, numerics, etc. (z;)
e Label (Reponse, dependent variable): an outcome that is categorical, numbers, etc. (y)
e Examples: instance coupled with label, i.e. < x;,y >

e Models: discovered relationship between attributes and/or label.

1.1.2 Supervised vs Unsupervised Learning

Data Model used for

Supervised Learning Labelled Predict labels on new instances

Cluster related instances; Project to fewer dimensions;

Unsupervised Learning | Unlabelled Understand attribute relationships

Evaluations: important for supervised learning

Evaluation principle: measure quality is problem-dependent
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Step 1: pick an evaluation metric Accuracy, Contingency table, Precision-Recall, F1, ROC

curves
step 2: procure an independent, labelled test sets
Step 3: Average the evaluation metric over the test sets.

Cross Validation especially when data is poor.

1.1.3 Probability Theory

Three types of models

g = f(x): regressions, best fitting parameters given a model, we model z.
(vl
z

x): For a given x, we model y as a distribution (likelihood of y given x).
(z,y): we model (x, y) together, the probability of having (x, y).

p
p

A random variable X is a numerical function of outcome X (w) € R

Discrete distribution Continuous distribution
e Govern r.v. taking discrete values e Govern real-valued r.v.
e Described by probability mass e Described by probability density
function p(x) which is p(X = X) function p(x) which is p(X = X)
e P(X<z)=37__ pla) e P(X < z) = [ pla)da (Sum from
the very left)
e Examples: Bernoulli, Binomial,
Multinomial, Poisson e Examples: Uniform, Normal,

Laplace, Gamma, Beta, Dirichlet

In terms of events A, B:

P(AN B) = P(A|B)P(B) = P(B|A)P(A)

P(B|A)P(A)

P(AIB) = =55

< P(A|B)P(B) = P(B|A)P(A)
Bayesian statistical inference makes heavy use of:

e Marginals: probabilities of individual variables

e Marginalisation: summing away all but r.v.’s of interest (reduce the number of vari-
ables/distribution)

By Shijie Huang



2 Statistical Schools of Thought

2.1 Frequentist statistics

Wherein unknown model parameters are treated as having fixed but unknown val-

ues.

The problem that we intend to solve

Given: X1, Xo,..., X, drawn i.i.d from some unknown distribution
Want to: identify unknown distribution

Approach: Parametric Approach

e Some model: parameterised by parameter sets 0

~

e Point estimates: point estimates (6) a function or statistics of data.

e Bias: By(0) = Ep[(A(X1,..X,)] — 0

e Variance: Varg(é) = Ey[(0 — Ey[0])*]

e Bias-variance decomposition of square loss:

Ey[(6 - 6)%] = [BO)]* + Varg(6)

What we really care is the squared loss, which contains both bias and variance. (Notice
that empirically, we care about the expected loss, since we don’t know the true distribu-

tion, we use the distribution of the sample to approximate).

Asymptotic properties

Consistency: 9(9:1, ...X ) converges to true 6 as n — oo (i.e., if we increase the sample
size to infinity, does the estimated distribution converge to the true distribution?)

Efficiency: asymptotic variance is as small as possible.

The Approaches: Maximum Likelihood Estimation (MLE)
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Algorithm 1 Maximum Likelihood Estimation (MLE)
1: We have a set of data (X1, ..., Xy)
2: We propose a distribution, py, which is assumed to have generated the data (i.e. we assume
that the data is generated by using this distribution function)
3: Express the likelihood of the data:

Apply log trick

Optimise to find the best (most likely) parameters 0: two ways to do that
(1) F.O.C: take partial derivatives of log likelihood w.r.t 6

(2) iterative processes, Newton method etc.

A

2.2 Bayesian Statistics

Wherein unknown model parameters have associated distributions reflecting prior
belief.

Key idea: Probabilities < beliefs

Bayesian Machine Learning:
Step 1: Start with prior P(6) and likelihood P(X|0)
step 2: Observe data X =«

Step 3: Update prior to posterior P(6|X = x)

In terms of events A, B:

P(AN B) = P(A|B)P(B) = P(B|A)P(A)

P(4|B) = B4 w}')?};; )

< P(A|B)P(B) = P(BJ|A)P(A)
Bayesian statistical inference makes heavy use of:

e Marginals: probabilities of individual variables

e Marginalisation: summing away all but r.v.’s of interest (reduce the number of un-

wanted variables/distribution)

PX=z)=) P(X=z0=t)
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