Shape: determined by isomers and the number of electron groups around a central atom

- Isomers: geometric (cis same side/trans opposite side isomers) and occurs in molecules with restricted rotation about a C=C
- cis trans
- <u>structural isomers:</u> different connectivity of groups ortho (position 2), meta (position 3) and para (position 4 – directly opposite)
- configurational isomer: different spatial sequence of atoms or groups connected to a central atom - interconversion requires breaking and reforming covalent bonds (optical isomers R- and S-)

<u>conformational isomer</u>: same connectivity and interconversion involves rotation(s) about a single bond(s)

Lewis structures: only the valence shell electrons are considered – trying to achieve the octet rule (8 valence electrons) for stability

- Single bond = 2 shared electrons, double bond = 4 shared electrons and triple bond = 6 shared electrons
- Valence Shell Electron Pair Repulsion (VSEPR) theory is used where each group of valence electrons around a central atom is located as far away as possible from others to minimise repulsions
- o Shows the type of bonding and the distribution of non-bonding electrons
- ightarrow Draw non-bonding electrons onto 2-dimensional representations of a drug.
 - Dots placed next to an atom are used to represent nonbonding electrons

- \rightarrow Assign local structures to regions of the drug.
 - o <u>Electron group</u> can be an atom or non-bonding electron pair
 - Molecular arrangement: geometry that we can construct that gives the maximal distance between the electron groups
 - o Molecular shape: defined only by the atoms

Number of electron groups	Number of atoms	Number of non-bonded electron pairs	Molecular arrangement	Molecular shape	Examples
2	2	0	Linear Bond angle: 180°	Linear	Central atom is Selegiline carbon (antiParkinsonian) – satisfies the octet rule
3	3	0	Trigonal planar	Trigonal planar	

			Bond angle: 120°		
	2	1	Trigonal planar	Bent (V shaped)	Bent Trigonal planar Fentanyl (analgesic)
4	4	0	Tetrahedral Tetrahedral Bond angle: 109.5°	Tetrahedral	
	3	1	Tetrahedral	Trigonal pyramidal	
	2	2	Tetrahedral	Bent (V shaped)	

ightarrow Indicate regions of a molecule that could participate in intermolecular interactions and nominate the type of interaction.

Intermolecular forces:

 <u>Electrostatic or ionic</u> – positive charged entity (from drug or target) interact with negatively charged entity (from drug or target)

Hydrogen bonding – weak to moderate attractive force that exists between a <u>hydrogen atom</u> covalently bonded to a very electronegative atom and a pair of electrons on another small, electronegative atom (N, O, F)

Hydrogen bond donor:

e- deficient H

Hydrogen bond acceptor:

e- rich heteroatom (with non-bonding e- pair)

 <u>Ion-dipole</u> – when an ion and a polar molecule interact - one entity is charged, and the binding entity is uncharged leading to unequal distribution of charge

- o <u>Dipole-dipole</u> arise from a degree of charge separation in polar molecules
- \circ Cation- π interactions interaction between an electron rich π systems e.g. benzene, ethylene, acetylene) and a cation (positively charged ion)

Lecture 3 and 4: Quantitative structure activity relationships (QSAR) 1 and 2 (14/03/18, 15/03/18)

\rightarrow Understand the types of chemical properties that may affect the effectiveness of a drug

- Multiple binding groups (3-4) in drugs to interact with various regions of the biological target
- Pharmacophore: <u>binding groups</u> that are relevant for the molecule to interact with its biological target and their relative <u>positions in</u> <u>space</u>

Designing agonists:

- Drugs are active if: appropriate binding groups are in correct position, molecule is the right size, extra groups fit into pockets at the receptor
- Conformational restriction can give better selectivity/potency –
 orientating the binding groups in a static conformation

Optimising activity and design:

 Can use: experience from other series, change distance between binding groups, bioisoteric groups (including ring substitution), conformational restriction, molecular modelling

Cyclobutane analogue = very potent and selective agonist at NMDA subtype of glutamate receptors

Bioisostere: compound resulting from the exchange of an atom or group of atoms with another to a similar type of motif with the aim of improving the pharmacokinetics of a given compound

Subtle change occurs – hope to get improved affinity and/or selectivity

E.g. 1) Bioisosteric replacement of the carboxylic acid group of glutamic acid gives AMPA

glutamic acid
$$\alpha$$
-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)

 The bioisosteric replacement makes AMPA more potent and selective agonist at the AMPA subtype of glutamate receptors

- o Structure 1 inhibits the angiotensin II receptor but was poorly absorbed
- o Bioisosteric replacement of the acid with a tetrazole ring resulted in losartan
- Tetrazole ring: Hydrogen is lost at physiological pH (pKa lower than 7.4) and ring is quite lipophilic – helps it partition across the membrane
- o The ability to cross the membrane is described as a degree

Quantitative Structure-Activity Relationships: (QSAR)

- QSAR techniques can inform what is a sensible drug to make and what particular substitutions are useful or not useful
- o Broad screening of compounds using QSAR technique will reduce the cost of initial discovery

Early QSAR studies:

- Looked at logP through regression analysis how a particular compound partitioned into a fatty phase
- ightarrow Understand the relevance of logP values and the relationship with drug availability

Partition coefficients: (logP) - fatty vs water

- Describes how a drug will distribute through an organic phase (octanol) or an aqueous phase (water)
- o LogP is used instead due to the large numbers involved

 $P = \frac{[\text{drug}]_{\text{octanol}}}{[\text{drug}]_{\text{water}}}$

ightarrow Use the relevant Hammett equations to predict K_a, π and σ values

dimethyl-benzene

Hydrophobic Substituent Constant: determines if a substituent increases or decreases hydrophobicity

 \circ Equation for hydrophobic substituent constant (π_X) from first principles

$$\pi_{X} = \log P_{X} - \log P_{H}$$
H = parent unsu

H = parent unsubstituted compound

X = substituent attached to parent compound

A logP of ~2 means that if 101 molecules of benzene are partitioned in a beaker with 50 mL octanol (fatty) and 50 mL of water and it is shaken and allowed to equilibrate

100 molecules will be partitioned into octanol and 1 molecule will partition into water

- o If a substituent has no effect on the partitioning of benzene into organic phase, $\pi_X = 0$
- o If a substituent <u>increases the partitioning</u> of the compound <u>into the organic phase</u>, π_X is positive, and the substituent is <u>hydrophobic</u>
- o If a substituent <u>decreases the partitioning</u> of the compound <u>into the organic phase</u>, π_X is <u>negative</u>, and the substituent it <u>hydrophilic</u>

Common hydrophobic (increase partitioning into organic phase) and hydrophilic (increase partitioning into water phase)

substituents:

Hydrop	nobic	Hydrophilic		
Substituent	π	Substituent	π	
-CH ₃	0.56	-NO ₂	-0.28	
-C(CH ₃) ₂	1.98	-OH	-0.67	
$-C_6H_5$	1.96	−CO ₂ H	-0.34	
-C ₆ H ₁₁	2.51	-NH ₂	-1.23	

E.g. 2) Hydrophobic Substituent constant

logP (benzene)		= 2.13
logP (chlorobenzene)	CI	= 2.84
logP (benzamide)	CONH ₂	= 0.64

$$\pi_{\text{CI}} = \text{logP}_{\text{(chlorobenzene)}} \text{(substituted)} - \text{logP}_{\text{(benzene)}} \text{(parent)}$$

$$= 2.84 - 2.13 = 0.71$$

$$\pi_{\text{CONH2}} = 0.64 - 2.13 = -1.49$$
Rearrange equation:
$$\log P_{\text{(meta-chlorobenzamide)}} = \log P_{\text{(benzene)}} \text{(parent)} + \pi \text{CI} + \pi \text{CONH2}$$

$$= 2.13 + 0.71 + (-1.49) = 1.35$$
Similar to the experimental value: $\log P_{\text{(meta-chlorobenzamide)}} = 1.51$

<u>Question</u>: Given that logP for benzene = 2.13 and π_{CO2H} = - 0.34 and $\pi_{OC}(O)$ CH3 = - 0.6, calculate the logP value for aspirin

CO₂H
$$CH_3$$
 aspirin CH_3 aspirin CH_3 aspirin CH_3 CH_3

Electronic Substituent Constant (Ka): extent of dissociation of an acid

$$\rho \sigma_{X} = \log K_{X} - \log K_{H}$$

- \circ Substituents with $\sigma < 0$ are electron donating disfavour dissociation of an acid
- \circ Substituents with $\sigma > 0$ ae electron withdrawing
- The position (ortho, meta or para) of the substituent is very important due to inductive and resonance effects
- o In instances not told otherwise, assume $\rho = 1$

Question: Does drug A or B dissociate to a lesser extent than benzoic acid?

$$K_a = 6.25 \times 10^{-5} \text{ M}$$
p $K_{a (H)} = 4.20$
Benzoic acid

$$\begin{array}{l} \text{Given:} \\ \sigma_{\text{meta}} \left(\text{NH}_2 \right) = -0.16 \\ \sigma_{\text{para}} \left(\text{NH}_2 \right) = -0.66 \\ \sigma_{\text{para}} \left(\text{CI} \right) = 0.45 \end{array}$$

<u>Note</u>: a greater pKa = dissociation to a lesser extent

The Hansch Equation:

$$\log\left(\frac{1}{C}\right) = a\pi + b\sigma + cE_s + d$$

- The values for the coefficients, a-c tell us how important the parameters are in terms of activity
- The (logP)² term highlights that there is an optimum value for P

C = dose required to produce a standard effect

<u>Biological activity</u> is expressed as 1/C because for a high performing drug, the C will be small (small amount is needed to achieve the defined biological activity)

 π = hydrophobic

 σ = electronic

 E_s = steric