Contents:

Pg. 1-6	Research processes, hypothesis testing & t-tests
Pg. 7-9	Two-sample t-tests
Pg. 10-12	Analysis of variance (ANOVA)
Pg. 13-15	One-way independent measures ANOVA
Pg. 16-17	One-way repeated measures ANOVA
Pg. 18-20	Pearson & spearman correlations
Pg. 20	Linear regression
Pg. 21-22	Chi-square statistic
Pg. 23	Mann-Whitney U-test & Wilcoxon Signed-Ranks test
Pg. 24-25	Kruskal-Wallis test & Friedman test

RESEARCH DESIGN & ANALYSIS - SEM 1 2013

Tutorial - jemima.koles@monash.edu

MUST KNOW CALCULATIONS FOR EXAM

- degrees of freedom
- mean squared deviations (MS) \rightarrow ss/df
- F-ratios → MSbetween treatments /MSwithin treatments

Lecture 1: research processes, hypothesis testing & intro to t-tests

Revision:

Ways of acquiring knowledge (Gravetter & Forzano)

- 1. Tenacity drawing on long-accepted facts/superstitions
- 2. Intuition drawing on instincts/hunches
- 3. Authority drawing on experts
- 4. Rationalism drawing on logical reasoning
- 5. Empiricism drawing on observations directly experienced by senses

Scientific method of gathering knowledge

- Gathered through empirical, systematic, objective & controlled explorations of nature
- Uses relatively precise measures to test predictions & draw inferences
- Draws upon methods of acquiring knowledge by using them in conjunction to minimize drawbacks of using one on its own
- Approach to acquiring knowledge that involves formulating specific questions & systematically finding answers
- 5 steps involved in scientific method (Gravetter & Forzano)
 - 1. Observe behaviour/phenomena
 - 2. Form tentative answer/explanation (hypothesis)

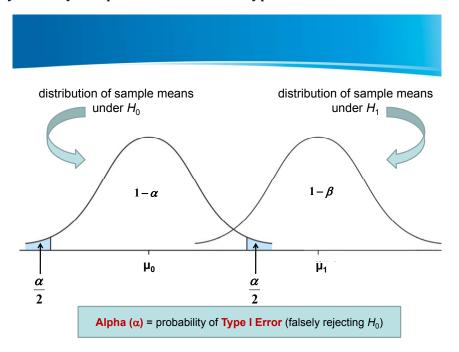
- 3. Use hypothesis to generate testable prediction
- 4. Evaluate prediction by making systematic, planned observations
- 5. Use observations to support/refute/refine original hypothesis

Research process (Gravetter & Forzano)

- 1. Find research idea
- 2. Determine how to define & measure variables
- 3. Identify participants for study
- 4. Select research strategy
- 5. Select research design
- 6. Conduct study
- 7. Evaluate data
- 8. Report results
- 9. Refine/reformulate research idea
- Experimental study design: participants are randomly assigned to one of two conditions
- Quasi-experimental: no random assignment of participants

Z-test

- Used to determine whether mean of sample of data does/doesn't differ from population mean
- Only can be used when population mean & standard deviation are known


Probability & samples: distribution of sample means

- Sampling error: natural discrepancy/amount of error between sample statistic & its corresponding popular parameter
- Distribution of sample means: collection of sample means for all possible random samples of particular size (*n*) that can be obtained from population
- Sampling distribution: distribution of statistics obtained by selecting all possible samples of specific size from population
- Expected value of *M*: mean of distribution of sample means is equal to mean of population of scores (**ų**)
- Standard error of *M*: standard deviation of distribution of sample means provides measure of how much distance is expected on average between sample mean (*M*) & population mean (*Q*) by chance
- Law of large numbers: states that the larger the sample size (*n*) the more probable it is that sample mean will be close to population mean
- Larger the sample size: likelihood of rejecting null hypothesis increases & measures of effect size (r^2 , Cohen's d) remain relatively unchanged
- 2 types of tests:
 - parametric tests
 - → interval/ratio data

- → more sensitive
- → more powerful
- → eg. t-tests, Pearson r correlation
- non-parametric tests
 - → nominal/ordinal data
 - → eg. Chi-square, Wilcoxon test
- Types of data:
 - nominal: no known order
 - ordinal: ordered by interval size not known
 - interval/ratio: ordered & intervals quantified

Introduction to hypothesis testing

- Null hypothesis (Ho): states that in general population there's no change/difference/relationship
 - predicts that IV has no effect on DV
 - eg. there is no difference between men's & women's mean reaction times in general population
- Alternative hypothesis (H1): states that there is a change/difference/relationship for general population
 - predicts that IV does have effect on DV
 - eg. in general population men's & women's mean reaction times aren't equal
- Alpha level/level of significance: probability value that's used to define very unlikely sample outcomes if null hypothesis is true

• Critical region: composed of extreme values that are very unlikely to be obtained if null hypothesis is true

- boundaries are determined by alpha level
- if sample data fall in critical region \rightarrow null hypothesis is rejected
- p-value: probability of getting obtained value (or more) if null hypothesis is true
- Cohen's d: tells us degree of separation between 2 distributions (how far means of null hypothesis & alternative hypothesis are in terms of sd)
 - how far apart in standardized units means of 2 distributions are
 - mean difference/standard deviation

Magnitude of <i>d</i>	Evaluation of effect size
<i>d</i> = 0.2	Small effect (mean diff around 0.2
	sd)
d = 0.5	Medium effect (mean diff around
	0.5 sd)
d = 0.8	Large effect (mean diff around 0.8
	sd)