GEN3030 - INDEX

Weeks 1-3: Gene Regulation In Eukaryotes

Week 4: Genetic Control Of The Drosophila Body Plan

Week 6: Apoptosis

Week 7: Neurogenetics & Behavior

Week 8: Gene X Environment Interactions & Plant Development

Week 9: Pant Development - How Plant Development Differs From That Of Animals

Week 10: Plant Meristems - How Do Plant Tissues And Organs Arise?

Week 11: Evo-Devo In Animals – How Are Developmental Processes Modified To Generate Diversity?

Week 12: Genetic Control Of Circadian Rhythms

Week 2 + 3 - Lectures 3 - 5 Gene Regulation in Eukaryotes

1. Chromatin Structure

Chromatin Types Are Based on Histone Modifications

• Chromatin distinguishes eukaryotes from bacteria

1. <u>Heterochromatin</u>

- DNA wrapped up + tightly packed
- inaccessible
- 'inactive' repressed gene expression
- "off"

a) Constitutive Heterochromatin

- DNA wrapped up all the time ∴ never accessible
- repetitive elements transposons, centromeres, telomeres that we don't want expressed
- H3K9me3

b) Facultative Heterochromatin

- DNA can be opened up into euchromatin by a series of molecular events + enzymes ∴ can be closed back down into heterochromatin. This process is reversible.
- Developmental / cell type specific genes
- H3K27me3
- PcG & Trx Complexes
- Cellular memory –eg. polycomb

2. Euchromatin

- DNA more loosely compacted
- Open + accessible
- "on"
- 'active' active gene expression
- constitutive + inducible genes
- active developmental / cell type specific genes
- H3K9Ac
- H3K4me

GEN3030 Week 12 Lecture 22 – Genetic Control of Circadian Rhythms

Clock Differences Between Flies & Mammals

Mammalian + fly clock system are **very well conserved**, but there are some differences:

In humans:

- Circadian rhythm in humans / mammals has the environmental input to tell our SCN that there is light or dark that is coming through our eyes
- Retinal ganglion cells containing pigment called melanopsin are the cells that detect light
- Once the retinal ganglion cells are activated, they signal to the hypothalamus that there is light coming in and ∴ it's day time ∴ allowing synchronization
- : SCN cells generate a signal to tell other parts of the brain what time of the day it is
- → in humans, light enters via the SCN

In flies:

- Light enters directly and is directly received
- SCN neurons are called pacemaker neurons
- In Drosophila the circadian pacemaker neurons are clustered in one area of the brain the environmental input acts on these cells directly, via cryptochrome