Meiosis

Female vs. Male Meiosis

- Spermatogenesis has equivalent meiotic divisions resulting in four equivalent spermatids.
- Oogenic meiosis is asymmetrical: only one egg is formed together with three polar bodies.
- In females, meiosis begins during embryogenesis, and stops at prophase I.
 - Meiosis is reinitiated at puberty in specific oocytes that begin to mature, and then stops at metaphase II.
 - Meiosis is not completed in the ovary until fertilisation has occurred.
- In males meiosis begins at puberty and does not stop.

Interphase I

- 'Resting' phase
- Centriole and DNA is replicated

Meiotic Prophase I

- Condensation of chromosomes (leptotene)
- Centrioles move to the poles; these are critical for formation of the spindles that will attach to the chromosomes
- Homologous chromosomes form synapses between equivalent regions on the chromosomes (zygotene)
- Recombination/crossing over occurs (pachytene) and completes during diplotene.
- Nuclear envelop disappears during diakinesis

Meiotic Metaphase I

- Chromosomes align at the equatorial plate
- Spindle fibres attached to chromsomes

Meiotic Anaphase I

• Homologous chromosomes separate (sister chromatids stay together) and move towards the poles.

Meiotic Telophase I

- Nuclear envelope reforms around chromosomes
- Cell begins to split, forming haploid daughter cells

Meiotic II

- Similar to mitosis.
- · Sister chromatids get pulled apart at centromere

Factors Underlying Genetic Variation

Crossing over

- Although all of your genes are received from your mother and father, they are not the same chromosomes.
- o Recombination during meiosis ensures "shuffling" of the alleles.

2. Independent assortment

- o Homologues line up and cross randomly on the metaphase plate in Meiosis I.
- With 23 chromosomes assorting independent, there are 2²³, or 8 million, possible assortments of chromosomes inherited for every cell.

3. Random fertilisation

- The ovum has 8 million possible chromosome combinations—so does sperm.
- 64 trillion possible diploid combinations!

Fertilisation

Leaving the Testis

- Male germ cells undergo spermatogenesis to produce sperm which occurs in the seminiferous tubules of the testis.
- The sperm leaves the testis through the epididymis, during which they acquire motility (testicular sperm cannot swim).
- Sperm don't acquire their full motility until they reach the female reproductive tract for "capacitation".

Capacitation of the Sperm

- Capacitation 'primes' the sperm for penetrating the egg.
- Enzymes are secreted by the uterine wall which generates an influx of Ca++ (to increase sperm motility—hyperactive) and alters the plasma membrane of the sperm head (to facilitate binding to the egg).

The Acrosome Reaction

- The acrosome of the sperm is derived from the Golgi apparatus and contains digestive enzymes including hyaluronidase and acrosin.
- These enzymes are needed to break through the layer of cumulus cells that surround the egg.
- Once the cumulus layer is breached by acrosomal enzymes, the sperm head can reach the egg surface.
- The acrosome contents then help the sperm head break through to the zona pellucida proteins on the surface of the egg, allowing the sperm and egg to fuse.
- The contents of the sperm head (haploid nucleus and centriole) can then enter the egg.

Fast Block to Polyspermy

- Once the acrosome reaction has occurred, the oocyte immediately commences the fast block to polyspermy.
- The membrane electrical potential of the egg undergoes a massive depolarisation, through a Na+ influx, stopping any more sperm from binding to the egg.

Slow Block to Polyspermy: Cortical Reaction

- A cascade of events is initiated by the binding and fusion of the sperm's membrane to the egg's membrane.
- This results ultimately in the release of Ca2+ into the egg, which stimulates the "cortical granule response".
- The cortical granules (just under the surface of the egg) fuse, and release their contents into the space between the cell membrane and the vitelline envelope (called ZP in mammals).
- This results in the hardening of the vitelline envelope and permanently blocks further sperm from binding; usually this is the point at which sperm fall off.

Completion of Meiosis

Unification

- Apposition and unification of sperm and egg pronuclei after fertilisation.
- The egg completes meiosis II
- Note that sperm centriole (from the neck of flagellum) duplicates and thus forms the critically important mitotic spindle.

Sperm Egg completes meiosis II Zygote Second polar body Male and female pronuclei DNA synthesis

Metaphase II

First Cleavage

 The chromosomes from the egg and sperm align on a single metaphase spindle which is an essential structure for the first cleavage.

First Cleavage

 The pronuclei make contact, fuse and their chromosomes intermingle,

Entry into M phase

forming the zygote, which is about to commence cell division.

• The zygote is surrounded by a shell rich in glycoproteins (the zona pellucida) formed initially in early folliculogenesis, deep to which is a polar body.