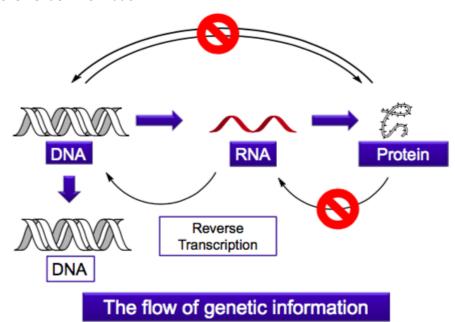
Lecture 1

Sunday, 4 March 2018 10:24 pm


Assessments Summary

Assessment task	Due Date and Time	Mark Contribution	Submission
ELN	Each fortnight, to be completed before the next lab session	25%	Complete on Labarchives
Data Analysis and presentation/Poster	Friday, week 11, 25th May	5%	Present
PeerWise authoring and evaluation tasks	Each fortnight, to be completed before the next tutorial session	10%	Submit Online to PeerWise site
ELMA design and interpretation	Weeks 12 and 13	10%	Submit at the end of the lab session
Final Exam	Exam period	50%	Attend Final Exam

Amino acid side chains can be

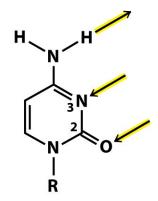
- Hydrophobic, hydrophilic
- Positive, negatively charged

Movement of information

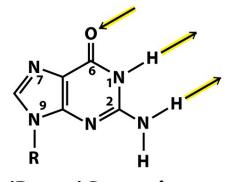
OH removed from 2' carbon to make the end more stable

• New nucleotides join to the 3' carbon

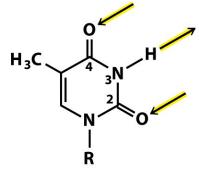
Backbone is hydrophilic and negatively charged Nucleotides attach to 3' end. Release Ppi (pyrophosphate)


Bases have donors and acceptors

- Donors have hydrogen
- Acceptors do NOT have hydrogen


Read DNA 5' -> 3'

Purines: 2 rings Pyrimidines: 1 ring


(Deoxy)Adenosine

(Deoxy)Cytidine

(Deoxy)Guanosine

(Deoxy)Thymidine

Figure 19-6 Principles of Biochemistry, 4/e © 2006 Pearson Prentice Hall, Inc.

pKa: the pH where 50% molecules are protonated, 50% not protonated

All 4 bases absorb roughly the same

- Does not change the UV absorbance
- Double stranded DNA absorbs less than single stranded DNA

Experiments are about

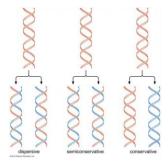
- Putting strands together
- Pulling strands apart

Polymerase is known by their product

- DNA polymerase makes DNA
- Add things to the 3' end

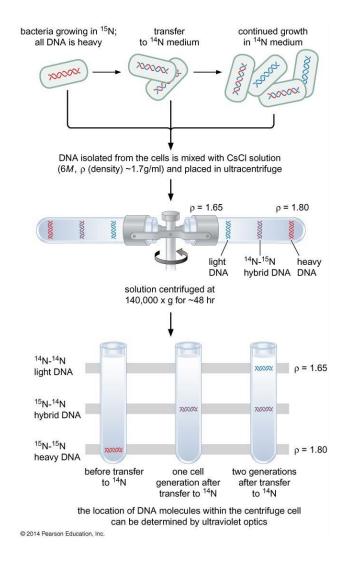
Lecture 2

Tuesday, 6 March 2018 3:07 PM


You don't need to know protein names. You need to know the **enzymatic functions** of the proteins.

DNA poly needs a primer

- The primer provides the OH end to attach dNTP molecules to
- Synthesis from 5' to 3' (the template stand copied 3' to 5')
- dNTP has 3 phosphates (tri-phsophate)
- Joins to OH with phosphodiester bond
- Releases pyrophosphate which is quickly hydrolised to phosphate


Three possible models of replication

- 1. Conservative
- 2. Semi-conservative (we now know this is correct)
 - Meselson-Stahl proved this
- 3. Distributed

Meselson-Stahl experiment

- Grow E-coli in N-15 (heavy isotope)
- Move cells to N-14 (light) and continue to grow

Bacterial DNA replication

- Have circular genome (plasmid)
- Replication starts at oriC (origin of replication)
- 9-mer motif -- 9 nucleotides long, repeated along the OriC
 - Origin-recognition protein, DnaA, binds to this
- 13-mer motif -- 13 nucleotides long, repeated
 - o AT rich. AT has 2 h-bonds, whereas GC has 3 h-bonds
 - AT is easier to split apart
 - Change the structure of DNA to allow separation
- Helicase unzips genes
- Single stranded binding protein (SSBP) holds the strands apart
- Primase inserts RNA primer
- DNA pol3 can start copying
 - Copying is bidirectional

DNA POL3

- Alpha enzyme does the polymerase
- Beta enzyme (sliding clamp) holds the DNAPOL3 to DNA

Processivity

- Ability to catalase many consecutive reactions which releasing substrate
- DNAPOL3 has high processivity

Leadings and lagging

- Leading strand synthesized continually
- Lagging strand synthesized in Okazaki fragments
 - The looped part is called the "Trombone slide"
 - o Primers needed for each fragment
 - After fragments are made
 - Primer is removed using Rnase H
 - 5' exonuclease removes the 5' nucleotide (DNAPOL1)
 - DNAPOL1 fills the gap
 - Fragments sealed using DNA ligase

FROM MBLG:

Difference between DNA pol 1 and pol 3?

- Both have 5' to 3' polymerase (new strand)
- Both have 3' to 5' exonuclease (proof reading)
- ONLY pol 1 has 5' to 3' exonuclease

Lecture 3 Prokaryotic Replication

Friday, 9 March 2018 11:02 am

Exonuclease	Cut from the end of the DNA strand
Endonuclease	Cut from the middle of the DNA strand

If DNA POL1 and POL3 do not fix a mismatch, there is mismatch machinery to fix this

• Mismatch repair can happen anywhere along the DNA

Plasmids are not perfectly circular

- DNA is negatively supercoiled
 - Negative just refers to the direction (left-handed coiling)
 - o In opening the DNA, Helicase adds supercoiling
- Topoisomerase add or remove supercoiling
 - By cleaving either one or two of the strands
 - Type 1 cut one strand and remove supercoiling
 - Type 2 cuts 2 strands and add supercoiling

TYPE 1

- Cut one strand
- Energy from potential energy in stressed DNA

TYPE 2

- Cut both strands
- Introduce negative supercoiling
- Requires energy input

After plasmid replication

- Circular genome is catenated
- Type 2 topoisomerase can decatenate (separate the rings)

DNA POL1 can be used for

- PCR
- DNA sequencing
- Probe labelling

PCR

- You need template, dNTP, primers (Primase), polymerase
- Steps
 - Separate the double strand by heating the sample (95 degrees)
 - Lower temperate so primers can stick (anneal)
 - Lower temperate for polymerase to perform
- Each cycle will denature DNA POL1
 - Instead of DNA POL1, we now use Taq polymerase (thermus aquaticus)
 - Taq lives in hot springs, proteins are heat stable
- In PCR, the primers used are made of DNA
 - Primers do not need to be removed because they are made of DNA

DNA is stabilized with salt ions. More salt, higher melting temperature More GC%, higher melting temperature Longer length chain, higher melting temperature

PCR advantages

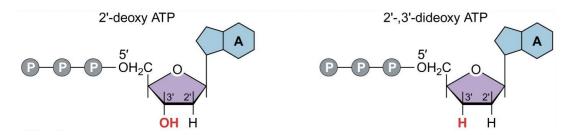
- Quickly synthesize many copies (doubles each cycle)
- Completely in-vitro (in glass)
- Can use very low amounts of source DNA

Limitations

- Start of target sequence must be known to make primer
- Sensitive to contamination

Why did we use POL1 in PCR and not POL3?

- Easier to make POL1 like enzyme
 - POL3 is more complicated and difficult to maintain in experimental conditions
- POL3 sliding clamp is much more complicated
 - The sliding clamp is used to keep POL 3 attached to the DNA


Replications occurs both ways along the circle (halves the replication time)

Lecture 4

Tuesday, 13 March 2018 11:00 am

Sanger sequencing

- Uses ddNTP
 - o no OH on 2' and 3' carbons
 - Terminates DNA polymer
- ddNTP labelled with radio isotope or fluorescent dye
 - denoted *ddNTP
 - Label on the alpha phosphate

- If ddAPT terminates a chain, we know the base at that position is a T
- Sequences are run through gel, and we can read the bands
 - Short sequences travel further
- We use a Taq variant which works better with ddNTP

Fluorescence-based sequencing

• Each ddNTP is labelled differently so we don't need 4 different sequencing runs

Next generation sequencing (NGS)

- Uses light emitted when a nucleotide in added to the chain
- See MBLG

Probe labelling

When you need to incorporate radiolabel into DNA

Making the probe

- Nick translation
 - Start with double-stranded DNA
 - DNAse adds a nick to the DNA
 - POL1 removes DNA using 5' to 3' exonuclease
 - DNA polymerase fills the gap with labelled dNTP
- Random primed labelling
 - Start with single-stranded DNA
 - o Random hexamers (6 bases long) will bind to regions of DNA and act as primers
 - DNA polymerase elongates from primer with labelled dNTP