
NOTEWORTHY
Tuesday, 27 June 2017
3:14 pm

Probably a good idea to add to your cheat sheet
--

SOLID
 Adapter is good for DIP (dependency inversion)
 Decorator is good for OCP (open close)
 All wrappers conform to SRP (single responsibility), provide a simple interface

Course
Monday, 27 February 2017
11:25 pm

Object Oriented Design

A/Prof. Bernhard Scholz

Room: Office 411
School of IT Building, J12
Email: Bernhard.Scholz@sydney.edu.au
Consultation Hour: 4pm to 6pm Mondays in SIT Room 411

Textbook
Design Patterns by Gamma, Hein, Johnson, and Vlissides
C++ Primer 5ed by Lippman, Lajoie, and Moo

Lab work
http://sydney.edu.au/engineering/it/~info3220

Tools
C++, Qt Creator, Git

http://sydney.edu.au/engineering/it/~info3220

1 Introduction to C++
Thursday, 9 March 2017
9:56 am

Why Object Oriented design?
 Abstraction
 Polymorphism
 Inheritance

C++ extends C
 C++ is a superset of C
 Almost all code in C can be compiled in C++
 Not all code in C++ can be compiled in C

C++
 Compiled language
 Variables in C++ should be initialized, else they are undefined
 No garbage collection: new and delete
 Extension: ".cc", ".cp", ".cpp"
 Can inherit from multiple classes (java cannot)

Streams
 Used for printing to console or file
 << is a stream operator

Namespaces are sets
 Used to prevent name / symbol clashes
 Can specify to use a default namespace at the beginning of file
 Can use multiple namespaces in same piece of code
 Namespaces can be nested

#include <iostream>

using namespace std;

int main() { return 0; }

Use header files for declaration (void of implementation)
 Split code into modules
 Can be compiled separately (recall make file)
 #include "example.h" looks for file in current path
 Be careful to include header files only once.

o Use preprocessor command #ifndef and #endif
o OR, new in C++
o #pragma ONCE

Macros are evil
 You don’t need them with what C++ offers

Method declarations go in header file
Implementation of methods go in CPP file

Lab 02
Monday, 13 March 2017
2:17 pm

This course is 50% design patterns and 50% C++

Header guards:

#ifndef __FOO_H__

#define __FOO_H__

…

#endif

Namespaces

namespace example {

}

example::foo // look for foo inside the container 'example'

using namespace example; // should never appear in a header file

Initializer list:

When implementing constructors,
Initialize values in the order they are declared

Pure virtual methods:

They combine the ideology of interfaces and abstract classes in Java.

virtual int getSpeed(); // no requirements to initialize

virtual int getSpeed() = 0; // method must exist, must initialize

2 More C++
Thursday, 16 March 2017
10:09 am

Pointers
 Reference (&) and dereference (*) operations
 Make sure they are initialized, otherwise UNDEFINED

std:string *p1, *p2;

 Why pointers? Passing around an address is faster than passing around a whole object

Default arguments
 The constructor can have default arguments
 Be careful not to make constructors ambiguous

Ball() { m_radius = 0; m_rgb = 0; }

Ball(double radius = 1, int colour = 1) {}

Initializer lists
 A value is assigned when the variable is created in memory
 Should be in same order as variables in class declaration

Const
 Const variables cannot change their value during their lifetime
 The left code won't work because the variables have been created before you move into the

body
 Const variables are a different type

o Const int is not the same as an int
o You can move from non-const to const
o You cannot go the other way

 Const methods

