PHTY5197 NEUROLOGICAL AND CARIOPULMONARY PHYSIOTHERAPY

WEEK 1 RESPIRATORY FAILURE AND INTUBATION (Tubes + Ventilation + Life Support)

- When the patient loses the ability to ventilate (move enough gas in and out of the lungs) adequately or to provide sufficient oxygen to the blood and system organs.
- Arterial Blood Gas (AGB) determines if patients are in failure or not.

TYPES OF RESPIRATORY FAILURE

HYPOXAEMIC

- Type 1, lung, O₂ gas movement, regional ventilation
- $P_aO_2 < 60$ mmHg
- $P_aCO_2 < 42mmHg$
- Ling disease is severe enough to interfere with O₂ exchange
- (SA problems) (CO₂ can be normal or less than normal).

HYPERCAPNIC

- Type 2, pump, CO₂ gas movement, ineffective minute ventilation, ↓ overall ventilation. (pump problem).
- $P_aCO_2 > 50$ mmHg
- The respiratory system pump is inadequate and can not maintain ventilation to eliminate the CO₂ produced by metabolism.
- Not enough gas in and out to blow off CO₂, has low O₂, caused by pump not working.

RESPIRATORY FAILURE CAN BE

ACUTE

- Rapid onset, short course and pronounced symptoms.

CHRONIC

- Long duration or poor AGB values with metabolic compensation (PH will be normal)

ACUTE ON CHRONIC

- E.g. acute exacerbation of advanced COPD/ failure with an infection.

IMPORTANT TERMS

- V_E = minute ventilation (=RRV_T). Amount of gas in the lungs every minute.
- Vd = dead space (non gas exchange area) (air that doesn't move into alveoli or gas that is not exchanged)
- V_D = Dead space ventilation (RRxVd)
- V_A = alveolar ventilation (=(V_T - V_d) xRR) diffused gas

a = arterial A = alveoli

a = arteriai A = aiveoii
 What is the V_E, V_A & does the CO₂↑ or ↓
Normal male
 Vd = 100 ml, V_T = 500 ml, RR = 12
$^{\circ}$ $V_{E} = 6 \text{ l/min } \dot{V}_{A} = 4.8 \text{ l/min } CO_{2} = N$
 Post abdominal surgery
 Vd = 100 ml, V_T = 250 ml, RR = 24
$^{\circ}$ $\mathring{V}_{E} = 6 \text{ l/min } \mathring{V}_{A} = 3.6 \text{ l/min } \text{CO}_{2} = \uparrow$
 DBE with the physiotherapist
 Vd = 100 ml, V_T = 750 ml, RR = 8
$\mathring{V}_{E} = 6 \text{ l/min } \mathring{V}_{A} = 5.2 \text{ l/min } \text{CO}_{2} = \checkmark$
 PE 2 weeks post discharge
Vd = 200 ml, V _T = 500 ml, RR = 12
" $\mathring{V}_E = 6 \text{ l/min } \mathring{V}_A = 3.6 \text{ l/min } \text{CO}_2 = \uparrow$

Normal values (ranges) for ABG analysis

pH	= 7.38 - 7.42*
PaCO ₂	= 38 - 42 mmHg*
PaO ₂	= 85 – 100 mmHg
HCO ₃ -	= 22 – 26 mmol/L
BE	= ± 2

NORMAL VALUES FOR ABG ANALYSIS

- PH
- o Normal = 7.38 7.42
- o Acidaemia = below 7.38
- o **Alkalaemia** = above 7.42
- PaCO₂
 - \circ **Normal** = 38 42mmHg
 - o **Respiratory acidosis** = above 42mmHg
 - o **Respiratory alkalosis** = below 38mmHg
- HCO₃
 - \circ **Normal** = 22-26 mmol/L
 - o **Metabolic acidosis** = Below 22 mmol/L
 - o **Metabolic alkalosis** = Above 26 mmol/L
- BE
- \circ Normal = -2 to +2
- o Metabolic acidosis = Below -2
- Metabolic alkalosis = Above +2

- Normal PaO₂ range: 85-100mmHg
- Hypoxaemic = $PaO_2 < 60$ mmHg
- Rule of thumb: F_iO₂ x 5 for PaO₂

MECHANISMS AND CAUSES

HYPOXEMIC RESPRIATORY FAILURE

- Reduced gas going to areas with perfusion (low lung volume)
- No gas going to areas with perfusion (acute lobar collapse)
- Diffusion impairment (pulmonary fibrosis)
- Gas going to areas with reduced perfusion (pulmonary embolism)

HYPERCAPNIC RESPIRATORY FAILURE (CO₂ movement problem)

- Depressed drive
- Impaired neuromuscular function (cervical chord injury, myopathies, neuropathies, respiratory muscle dysfunction)
- Increased respiratory load (↑ airway resistance)
- Altered chest wall compliance (kyphoscoliosis/ # ribs)
- ↓ lung compliance (collapse)

CLINICAL MANUFESTATIONS

HYPOXAEMIA

- \downarrow mental acuity ($P_aO_2 \le 40\text{-}50$ mmHg
- agitation followed by somnolence
- dyspnoea
- \(\) RR, change in pattern of breathing
- organ failure renal failure, brain injury

HYPERCAPNIA

- depends on rate of rise of CO₂ and metabolic compensation
- dyspnoea
- \(\text{ RR, change in pattern of breathing (COPD)} \)
- agitation, tremor, confusion to coma.
- † ICP (in brain injury), headache (no brain injury)

IMPLICATIONS FOR PHYSIOTHERAPY

- watch for signs and symptoms of respiratory failure.
- Review medical assessment and management
- Determine type of respiratory failure (hypoxemic/ hypercapnic)
- Determine cause of respiratory failure
- Choose appropriate treatment interventions.

INTUBATION

Used for:

- maintaining patent upper airway (suffocation)
- protect lower respiratory tract (aspiration)
- enable adequate tracheobronchial toilet (suctioning)
- Allow ventilatory support (mechanical ventilation, oxygen therapy/ CPAP/ PEEP
- The cuff on the tube is used to make a seal so that air only goes through the tube and not around it.

WEEK 1 VENTILATORY SUPPORT

- Assists with respiration and moving O₂ and CO₂.
- Spontaneously breathing on mechanical ventilation.
- Intubated and non intubated patients
- Intermittent to continuous/ total support.
- Oxygen therapy increases the available O_2 for gas exchange.
- PEEP and CPAP both do the same thing (increases surface area by opening up alveoli for longer.

POSSIBLE REASONS FOR HYPOXAEMIC RESPIRATORY FAILURE

- Inadequate transfer of O₂ into blood
 - o Inadequate fresh air reaching exchange area, reduced SA, diffusion problems.
- Inadequate O₂ transport (Hb, Inadequate circulation)
- Extraction/ utilisation problems.