

COMP3231

Compiled by Tim Hor

COURSE SUMMARY

Contents

1. Introduction to Operating Systems

2. System Calls

3. Processes and Threads

4. Concurrency and Synchronisation

5. Deadlock

6. Process and Thread Implementation

7. Computer Hardware, Memory Hierarchy and Caching

8. File Management

9. Memory Management

10. Virtual Memory

11. I/O Management

12. Multiprocessors

13. Scheduling

1. Introduction to Operating Systems

Learning Outcomes
• A high-level understanding of what an operating system is and the role it plays

• A high-level understanding of the structure of operating systems, applications, and the

relationship between them

• Some knowledge of the services provided by operating systems

• Exposure to some details of major OS concepts

Roles of an Operating System
• Abstract machine

– Extends the basic hardware with added functionality

– Provides high-level abstractions

▪ More programmer friendly

▪ Hides the details of the hardware, making application code portable

• Resource manager

– Responsible for allocating resources to users and processes

– Must ensure:

▪ No starvation

▪ Progress

▪ Allocation is according to some desired policy (first come first served, fair share,

weighted fair share, etc.)

– Overall, that the system is efficiently used

User Mode vs. Privileged Mode
• User mode gives applications access to a restricted subset of the machine in order to protect

the OS from applications. An application can only access memory that the OS has made

available to it and should not be able to uncontrollably interfere with or bypass the OS directly.

• Privileged mode, or kernel mode, provides unrestricted access to all resources in the machine.

This is the mode in which the kernel runs.

• Kernel:

– Portion of the operating system that is running in privileged mode

– Contains fundamental functionality – whatever is required to implement other services

or provide security

• Assume two simple operations on processes (or threads):

– sleep(P) suspends the execution of a running process P

– wakeup(P) resumes the execution of a blocked process P

• Then, semaphore operations can be defined as:

void wait(semaphore S) {
 S.count--;
 if (S.count < 0) {
 // add this process to the queue of sleeping/blocked processes
 enqueue(curproc, S.queue);
 sleep(curproc);
 }
}

void signal(semaphore S) {
 S.count++;
 if (S.count <= 0) {
 // there is a process blocked on the semaphore
 P = dequeue(S.queue);
 wakeup(P);
 }
}

• wait() and signal() are executed atomically (interrupts are disabled for each)

Semaphore as a General Synchronisation Tool
• The value of count is the number of processes/threads that can go past the wait() before a

signal() is required, i.e. how many are allowed in between wait() and signal() at a time

• Initialise count to 0 to execute B in Pj only after A has executed in Pi

Semaphore Implementation of a Mutex
• Mutex = mutual exclusion (i.e. a lock)

• Initialise count to 1

semaphore mutex;
mutex.count = 1;
wait(mutex); // enter the critical region
do_something();
signal(mutex); // exit the critical region

• Programming with semaphores can be error-prone – e.g. with mutexes, must match a signal()

for every wait(), otherwise a race condition may occur

Deadlock Modelling
• Deadlocks can be modelled with directed graphs

(a) Resource R assigned to process A

(b) Process B is requesting/waiting for resource S

(c) Process C and D are in deadlock over resources T and U

Dealing with Deadlock

Strategy Description

Ostrich
Algorithm

• Pretend there is no problem
• Reasonable if deadlocks occur very rarely and the cost of prevention is high

(e.g. it would mean only one process runs at a time)

Prevention • Preventing one of the four conditions required for deadlock from occurring via
resource allocation rules

• Attacking the mutual exclusion condition is generally not feasible, as some
resources are intrinsically not shareable

• Attacking the hold and wait condition requires processes to request resources
before it starts running, so a process never has to wait for what it needs

– Not always possible – may not know required resources at start of run
– Also ties up resources that other processes could be using

• Attacking the no pre-emption condition means taking resources away
– Not a viable option
– Consider a process given access to the printer, when the printer is

forcibly taken away halfway through its job
• Attacking the circular wait condition: resource ordering

– Gets rid of the circular dependency that causes deadlock

Detection
and Recovery

• Detection:
– Look for cycles in a directed dependency graph
– Use an allocation/request matrix with the invariant: sum of current

resource allocation + resources available = resources that exist
• Assuming deadlocked is detected, restore progress to the system using

pre-emption/rollback/killing processes – see below section

Dynamic
Avoidance

• Allocating resources to processes in a way that deadlock is avoided, by only
allowing progression into safe states (delay servicing some of the requests
on purpose because otherwise deadlock might occur)

• Can only be done if enough information is available in advance – maximum
number of each resource required

• Going down the hierarchy:

– Decreasing cost per bit

– Increasing capacity

– Increasing access time

– Decreasing frequency of access to the memory by the processor

• Principle of locality: if we access certain data repeatedly, it gets loaded into the cache, so the

next access will also likely come from the cache instead of main memory (RAM) instead of

having to move it all the way up the hierarchy every time

• Implications:

– Code that accesses things only once will be low performant

– Code that accesses things repeatedly will be more performant (e.g. using the same

function to do the same thing rather than writing 10 different functions to do the same

thing), because it's more likely that the code or data being referenced will be higher up

the hierarchy

Caching as a General Technique
• Caching is a general technique for speeding up access to data using intermediate storage – it

doesn't necessarily refer to the hardware CPU cache

• For example, we can use main memory as a cache for the hard drive, or use the hard drive as a

cache for static content loaded from the internet

Improving Performance
• If the compiler generates an instruction that accesses a variable, we need to load that variable

from where it's stored. The instruction will issue an address, which goes into the cache, and the

cache will either:

– Miss, in which case the hardware then fetches that variable from main memory, or…

– Hit, in which case the cache itself supplies the contents of that memory location at a

much lower latency compared to main memory

• We can determine the Effective Access Time by computing the proportion of accesses that are

resolved by the cache (fast memory) compared to the proportion of accesses that are resolved

by slower memory

Effective Access Time of Memory Subsystem (Formula)

𝑇eff = 𝐻 × 𝑇1 + (1 − 𝐻) × 𝑇2

 𝑇1 = access time of memory 1

 𝑇2 = access time of memory 2

 𝐻 = hit rate in memory 1

Example:

• Cache memory access time 1ns

• Main memory access time 10ns

• Hit rate of 95%

𝑇eff = 0.95 × 10−9 + (1 − 0.95) × (10 × 10−9)

= 1.5 × 10−9 𝑠

File Access Types
• Sequential access

– Read all bytes/records from the beginning

– Cannot jump around to a specified location, but can rewind

• Random access

– Read bytes/records in any order

• The OS can take advantage of sequential access to perform optimisations and do work in

advance to make applications run faster

• Disks support random access but perform better when sequentially accessed

File Access Permissions

Permission Description
None • User may not know of the existence of the file

• User is not allowed to read the directory that includes the file
Knowledge • User can only determine that the file exists and who its owner is
Execution • User can load and execute a program but cannot copy it

Reading • User can read the file for any purpose, including copying and execution
Appending • User can add data to the file but cannot modify or delete any of the

file’s contents
Updating • User can modify, deleted, and add to the file’s data

• This includes creating the file, rewriting it, and removing all or part of
the data

Changing Protection • User can change access rights granted to other users
Deletion • User can delete the file
Owner • Has all rights previously listed

• May grant rights to others using the following classes of users
– Specific user
– User groups
– All for public files

UNIX Access Permissions

drwxrwxrwx

• First letter: file type (d for directories, - for regular files)

• Three user categories: user, group, and other

• Three access rights per category: read, write and execute

• The execute permission on a directory controls whether that directory is accessible

• The umask is a set of digits that correspond to each 'triple' of access permissions (rwx)

• Each file can only be associated with one group and there can only be one set of permissions

for that group

• Shortcoming: the three user categories are rather coarse, e.g. can’t easily assign different

permissions on an individual basis to people not part of the same group (would need to use

access control lists)

Simultaneous Access
• Most operating systems provide mechanisms for users to manage concurrent access to files

• Examples: flock(), lockf(), system calls

• Mutual exclusion and deadlock are issues for shared access

Method Advantages Disadvantages
Contiguous
allocation

• Easy bookkeeping (only need
to keep track of the starting
block and length of the file)

• Increases performance for
sequential operations

• Need the maximum size for the file at the
time of creation

• As files are deleted, free space becomes
divided into many small chunks (external
fragmentation)

Dynamic
allocation

• No external fragmentation

• Does not require pre-allocating
disk space

• Partially filled blocks (internal
fragmentation)

• File blocks are scattered across the disk

• Complex metadata management (must
maintain the list of blocks for each file)

External and Internal Fragmentation
• External fragmentation: memory space wasted external to allocated regions

– Memory space exists to satisfy a request but it is unusable as it is not contiguous

– For example, if blocks of memory are freed up because a file has been deleted, but they

are not contiguous, a new file that would otherwise fit within those blocks cannot be

written there as it does not fit in any single block

• Internal fragmentation: memory space wasted internal to allocated regions

– Allocated memory may be slightly larger than requested memory

– If the minimum allocation size is bigger than what is needed to store a file, the rest of the

block will be wasted

– We can't allocate smaller than the block size if we want to deal with memory in terms of

equal-sized chunks rather than arbitrary-sized chunks

Buffering

• The idea of grouping together the information being received at a particular time into a larger

entity (e.g. a packet instead of a byte at a time over a network)

• If the overhead is largely the same, it is much more efficient

• The more buffering you do in a fast network, the lower the throughput

Types of Buffering

Type of Buffering Description
No buffering • Process must read from/write to device a byte/word at a time

• Each individual system call adds significant overhead

• Process must wait until each I/O is complete
User-level buffering • Process specifies a memory buffer that incoming data is placed in until

it fills

• Filling can be done by interrupt service routine
• Only a single system call, and block/wakeup per data buffer (much

more efficient)
Single buffer • Operating system assigns a buffer in kernel’s memory for an I/O request

• User process can process one block of data while next block is read in
• Swapping can occur since input is taking place in system memory, not

user memory
• Operating system keeps track of assignment of system buffers to user

processes
• If kernel buffer is full, start to lose characters or drop network packets

Double buffer • Use two system buffers instead of one

• A process can transfer data to or from one buffer while the operating
system empties or fills the other buffer

• May be insufficient for really bursty traffic

Circular buffer • More than two buffers are used

• Each individual buffer is one unit in a circular buffer
• Used when I/O operation must keep up with process

These all attempt to address the bounded-buffer producer-consumer problem.

12. Multiprocessors

Learning Outcomes
• An understanding of the structure and limits of multiprocessor hardware

• An appreciation of approaches to operating system support for multiprocessor machines

• An understanding of issues surrounding and approaches to construction of multiprocessor

synchronisation primitives

Multiprocessor Systems
• Multiprocessor systems use more than one CPU to improve performance

• Assumes:

– Workload can be parallelised

– Workload is not I/O-bound or memory-bound

• Shared-memory multiprocessors: more than one processor sharing the same memory

	1. Introduction to Operating Systems
	Learning Outcomes
	Roles of an Operating System
	User Mode vs. Privileged Mode
	Semaphore as a General Synchronisation Tool
	Semaphore Implementation of a Mutex
	Deadlock Modelling
	Dealing with Deadlock
	Caching as a General Technique
	Improving Performance
	Effective Access Time of Memory Subsystem (Formula)
	File Access Types
	File Access Permissions
	UNIX Access Permissions
	Simultaneous Access
	External and Internal Fragmentation
	Buffering
	Types of Buffering

	12. Multiprocessors
	Learning Outcomes
	Multiprocessor Systems

