- · Reversible and irreversible injury depend on time and severity of injury
- Irreversible injury can lead to cell death (either necrosis or apoptosis)
- Some cells can adapt to injury
- Unregulated cell death (necrosis) is pro-inflammatory
- There are many regulated cell death mechanisms other than necrosis and apoptosis
- The earliest manifestation of almost all types of cell injury is cellular swelling
- ATP depletion and decreased ATP synthesis are frequently associated with hypoxia and chemical injury

Cell Injury

- Reduced ATP production due to mitochondrial damage
- Loss of calcium homeostasis due to cell membrane damage
- · Disrupted membrane permeability of organelles and cell membranes
- Free radicals
- Protective mechanisms in response to cell injury
 - Heat shock response genes
 - Produce proteins which are upregulated in the face of cell stress
 - Protects proteins from stress-related damage
 - Clean up damaged proteins
 - Many tissues and organs can survive significant injury if they are 'pre-stressed' (adaptation)
- Morphological alterations
 - o Decline in cell function
 - o Biochemical alterations leading to cell death
 - Ultrastructural changes cell swelling, fragmented nuclei, etc.
 - Pyknosis, karyorrhexis, karyolysis
 - Light microscopic changes cytoplasmic changes, nuclear changes, fatty change
 - o Gross morphologic changes
- Hypoxia most common injury
 - Insufficiency of oxygen due to reduced blood supply
 - o Triggers -
 - Ischaemia blockage in blood supply (e.g. embolus, cardiac failure)
 - Hypoxaemia reduced oxygen (e.g. high altitude, anaemia)
 - Oxidative phosphorylation inhibition (e.g. cyanide poisoning)
 - Effects
 - Decreased ATP metabolite substrates limited, wastes accumulate
 - Free radicals are highly reactive and damage macromolecules
 - Sudden increase in oxygen can also increase free radicals (reperfusion injury)
 - Can cause lipid peroxidation → membrane damage
 - Can cause protein modifications → breakdown, misfolding
 - Can cause DNA damage → mutations
 - Outcome depends on balance between reversible and irreversible injury (time-dependent)
 - Tissue type also important
 - o Reperfusion (restoration of blood flow) generally results in cell recovery if substrates are provided

Necrosis

- Death of groups of contiguous (localised) cells in tissue or organ
- Causes inflammation due to spilling whereas apoptosis does not
 - First cells to come in are neutrophils
- Coagulative (ischaemic necrosis)
 - o Cells died but basic shape and architecture of tissue remains
 - Maintains solid consistency
 - o Necrotic cells ultimately removed by inflammatory cells
 - Regenerated or replaced by scar (fibrosis)
- Gangrene (coagulative necrosis of the lower limbs)
- Liquefactive (e.g. brain ischaemic necrosis)
 - o Complete dissolution of necrotic tissue
 - o Massive infiltration by neutrophils (abscess formation) release ROS and proteases
- Caseous (e.g. TB and fungal infections)
 - Accumulation of amorphous (no structure) debris within an area of necrosis
 - o Tissue architecture abolished
- Infarct (red or white)
 - o Area of ischaemic necrosis
 - White arterial occlusion in solid tissues
 - o Red/haemorrhagic venous occlusion in loose tissues

Apoptosis

- Programmed cell-autonomous suicide
- Requires energy expenditure
- Triggers
 - Withdrawal of growth stimuli such as growth factors
 - Death signals (e.g. by Fas and TNF)
 - o DNA damage (e.g. p53)
 - Unfolded protein response (causing ER stress)
- Normally occurs during development (limbs) and for removal of certain cells (self, infected)
- Gross morphological changes
 - Cytoplasm shrinks, blebbing of plasma and nuclear membranes, membrane-bound bodies (no inflammation) are phagocytosed
- Intrinsic (mitochondrial) pathway internal cell injury results in apoptosis of the cell
 - o Activation of pro-apoptotic factors (BH3-only proteins Bim) → cytochrome c leakage → caspases
 - BCL2, an anti-apoptotic protein antagonises pro-apoptotic factors to oppose apoptosis

- Extrinsic (death receptor) pathway receptor-ligand interactions induce cell death
 - o E.g. FasL on cytotoxic T cell binds to Fas on target cell, breakdown occurs via caspases
 - o E.g. TNF binds to target cell and induces apoptosis

Feature	Necrosis	Apoptosis
Cell size	Enlarged (swelling)	Reduced (shrinkage)
Nucleus	Pyknosis → karyorrhexis → karyolysis	Fragmentation into nucleosome-size fragments
Plasma membrane	Disrupted	Intact; altered structure, especially orientation of lipids
Cellular contents	Enzymatic digestion; may leak out of cell	Intact; may be released in apoptotic bodies
Adjacent inflammation	Frequent	No
Physiologic or pathologic role	Invariably pathologic (culmination of irreversible cell injury)	Often physiologic, means of eliminating unwanted cells; may be pathologic after some forms of cell injury, especially DNA damage

Autophagy

- · Regulated death mechanism
- Stress or starvation can result in autophagic vacuolisation within the cell
- Outcomes autophagic survival or autophagic cell death (depends on Beclin-1 levels)

Mitochondria

- Necrosis: low O2 → mitochondrial damage → low ATP, high ROS → Necrosis
- Apoptosis: more pro-apoptotic proteins (BH3-only), less anti-apoptotic proteins (BCL2) → leakage of mitochondrial proteins (cytochrome c) → Apoptosis

Ageing

- Persistent and gradual decline in the age-specific fitness components of an organism due to internal physiological degeneration
- Universal risk factor for disease development
- Factors
 - Genetics accumulation of mutations
 - Cell biology
 - o Biochemistry metabolism
 - Endocrinology
 - o Regenerative medicine way to replace ageing cells?
 - o Demography and environment
- Cells decline in efficiency of cellular functions with advancing age
 - o Mitochondria less efficient in performing oxidative phosphorylation
 - o Synthesis of structural, enzyme and receptor proteins
 - o Take up to nutrients and chromosomal damage repair impaired
 - o Abnormally shaped organelles accumulate waste products
- Muscles atrophy due to loss of muscle fibres
- · Organs decrease in size and activity
- · Causes of ageing
 - Wear and tear theories living and being exposed to the environment
 - o Free radicals
 - Programmed ageing
 - Accumulation of gene mutations predicts that genetic diseases should increase in frequency with age
- Telomerase lengthens telomeres
 - o Telomeres shorten with each cell division
 - The length of telomeres slows down the ageing process by allowing cells to divide
 - o Cancer cells employ mechanisms that prevent telomere length shortening

Senescence

- Causes a loss of tissue repair capacity because of cell cycle arrest in progenitor cells
- Senescent cells produce proinflammatory and matric degrading proteins Senescence Associated Secretory Phenotype (SASP)
 - Triggers senescence in surrounding cells
- Genetic factors and environmental insults combine to produce the cellular abnormalities that are characteristic of ageing
- Werner's syndrome premature senescence
 - o Inherited disease that causes premature ageing
 - o Patients more susceptible to cancer, osteoporosis, diabetes and cataracts
 - o Usually die in their 40s
 - Mutated WRN gene encodes a helicase (unwinds DNA for replication, repair and transcription)
 - Improper DNA repair and rapid accumulation of mutations and improper transcription of genes needed to maintain vigour are possible causes
- Progeria
 - Children age rapidly and die as young as 12
 - Caused by dominant mutation in lamin A gene, which has a role in nuclear integrity (structure)
 - Patients have shorter telomeres than normal children
- Role of cytokines in replicative senescence
 - o IL-6 and IL-8 contribute to maintain the senescent phenotype (SASP) via bystander senescence
 - o These cytokines also inhibit cellular proliferation and promote senescence
 - Proof of bystander senescence elimination of senescent cells (expressing p16 biomarker) delayed tumorigenesis and reduced age-related deterioration of several organs, including kidney and heart
- NFkB central transcriptional regulator of stress/inflammatory response
 - NFκB contains 2 components RelA and p50
 - P50 is an anti-transcription factor that stops proinflammatory protein expression

- RelA is a pro-transcription factor that promotes expression of inflammatory proteins
- o Pathway can both promote and repress inflammation depending on the balance of RelA vs p50
- Chronic inflammation induces telomere dysfunction and accelerates ageing in mice
- Caloric restriction postpones senescence
 - Induces levels of some antioxidant enzymes which counteract ROS
 - Metabolic pathways interact with the insulin and IGF-1 (pro-ageing) pathways
 - Caloric restriction increases SIRT1
 - SIRT1 upregulates FOXO1 which upregulates longevity genes and inhibits pro-ageing genes
 - Insulin and IGF-1 pathways inhibit FOXO1
 - High PTEN levels make cells senesce more slowly
 - o Reduction in IGF-1 receptor extends lifespan of mice
 - Mice lacking the insulin receptor in adipose tissue extends longevity
- Autophagy can be a survival mechanism in times of nutrient deprivation
 - Cell cannibalises itself and recycles the digested contents
 - o Important in maintaining cell health as it clears cellular waste
 - When autophagy is inefficient, cellular waste accumulates and cells senesce faster
- Macrophages
 - More men were found to live past 100 on Sardinia than anywhere else in the world
 - Macrophages in these men appeared 'younger' and more active
- Ageing is a polypathology multiple chronic diseases
- 'Inflammageing' inflammation is the core of senescence

- Senotherapies prevent disease and extend healthy lifespan
 - Anti-ageing drugs = senolytics
 - o Prevent senescence triggers
 - o SASP inhibition
 - Senescent cell killing

Stem Cells

- Reservoir for replacing cells in nearly all tissues
- Progenitor cells stem cell-like cells that can replace damaged tissue

