24/4 – Hearing in Birds, Lizards and Mammals

- Basic anatomy and physiology of hearing
 - o Cochlea: sensory transduction of sound (pressure) into electrical signal
 - o Auditory nerve runs from cochlea to:
 - Superior olivary nucleus
 - Inferior colliculus
 - Thalamus
 - Primary auditory cortex (perception)
- Depolarisation/ hyperpolarisation depending on type movement
- Mammalian Ear
 - External ear
 - Pinna
 - Ear canal
 - Middle ear
 - Ear drum
 - Middle ear bones (Ossicles)
 - Malleus
 - Incus
 - Stapes
 - Oval window
 - Inner ear
 - Cochlea
 - Vestibular organs
- Mammalian cochlea
 - o 3 fluid filled compartments
 - Scala vestibuli
 - Scala Tympani
 - Scala Media
 - o 2 different fluids
 - Perilymph (SV, ST), similar to blood plasma
 - Endolymph (SM), high K+, low Na+
 - Sensory epithelium in mammals
 - Organ or corti
 - Mammalian sensory epithelia
 - Basilar membrane: separates the ST from the SM
 - Inner hair cells: Movement of basilar membrane rubs hair cells against the tectorial membrane opening stereocillia → graded potential of gangion cells (NT release) → AP of the auditory nerve fibres
 - Outer hair cells: allows amplification of sound stimulation makes hair cells change length, changing distance btwn tectorial and basilar membranes
 - Mechano Transducers
 - Inner hair cells
 - Outer hair cells
 - Tonotopic organisation
 - Hair cell types
 - Inner hair cell (IHC): release glutamate following DP
 - Outer hair cell (OHC): provide mechanical amplification
 - o The smaller the head, the higher the audible frequency
- Sensory epithelium in Birds
 - o Basilar papilla

- Flat instead of spiral (like cochlea)
- High frequency is amplified near narrow rigid base (oval window)
- Low frequency is amplified near wide floppy apex
- Concentration of hair cells increase towards the wider (floppy) end of the papilla
- Size of papilla increases as the weight of the animal increases
 - As the size increases, the receptive range shifts
 - Heavier animals are able to hear more low frequency sounds
 - Lighter animals hear more high frequency sounds
- o 1 middle ear bone (Ossicle): columella
- Tonotopic organisation
- Hair cells
 - Height increases from base (narrow) to apex (wide)
- o Has tectorial membrane for stimulation
- Hair cell types in birds
 - Frequency SAME IN MAMMALS
 - High frequency basal: shorter cells
 - Low frequency apical: longer cells
 - Outer hair cells have many more efferent stereocillia than afferent stereocillia
 - Hair cells in birds and reptiles DON'T MOVE
- o Hair cells In birds and lizards are able to re-grow
- Sensory epithelium in Lizards
 - o Hair cell orientation changes from 1 side to the other
 - There is no set movement for depolarisation OR hyperpol. some hair cells are always depol. while others are hyperpol. even from the same movement
 - Have a basilar papilla
 - Tonotopic organisation
- Innervation density
 - o 1 IHC stimulates many ganglion cells
 - o Many OHC stimulates 1 ganglion cell
- Stereocillia
 - Mammals
 - 3 rows per hair cell
 - OHC in the shape of a V
 - o Birds/ lizards
 - Multiple rows per hair cell
 - o Stereolocating animals have a large ratio of inner to outer hair cells

1/5 – Sensory ecology

- Sensory diversity causes
 - Evolutionary history
 - o The body (size, energy, etc)
 - The environment
 - Signals (Communication & others)
 - o Information Behaviour
- Sensory diversity Ways of studying
 - Comparative approaches
 - Psychophysics
 - Ecology (behavioural interactions)
 - o Detailed behavioural studies (what is their goal in life)