18/8 – Association studies II

- Association studies
 - o Looks to find traits that correlate with marker alleles in populations
 - o Compares unrelated individuals by looking for markers in LD
- Linkage disequilibrium (LD)
 - o Non-random association of alleles in the population
 - o Alleles at neighbouring loci tend to co-segregate (have stronger LD)
- Linkage Disequilibrium Mapping
 - Population based
 - o Look for variant allele in LD with disease
 - o If most affected individuals in a population share the same mutant allele, then LD can be used to locate the chromosomal region harbouring the mutant allele
 - Able to see marker alleles in association with disease genes
- Haplotypes
 - o Groupings of specific <u>linked</u> SNPs (alleles) on a chromosome segment that stay together and can be tracked through pedigrees
 - Within the same haplotype, all genetic markers (SNPs etc) are inherited together
 - o Allows for mapping of particular diseases
 - If a disease gene is produced within a specific haplotype region and passed through generations, it's very likely that people in the population with that disease also have that haplotype
- LD mapping
 - There is correlation between the presence of certain marker allele (or haplotype) and the disease gene allele (LD)
 - o The correlation (LD) is based on founder effect:
 - The disease allele was born a long time ago on a certain ancestral chromosome, and majority of disease alleles existing presently predate from that original mutation
- Allelic Association: Three Common Forms
 - Correlation between marker allele and trait
 - Direct Association
 - Marker is directly involved with disease phenotype (within gene)
 - Indirect Association
 - Marker is indirectly involved with disease phenotype (in LD with gene)
 - Spurious association
 - Apparent association due to poor study design
 - Can be caused by population stratification
- Population Stratification
 - Recent admixture of populations
 - Requirements
 - Group differences in allele frequency (unrelated allele differences)
 - Group differences in outcome (diseased/ not diseased individuals)
 - Leads to spurious association
 - o In epidemiology, this is a classic matching problem, with genetics as a confounding variable
- Spurious association is caused by two factors in population stratification
 - Different proportions of allele frequencies in subpopulations in case and controls
 - o Different allele frequencies of subpopulations
- Population stratification solutions

- Family-based controls (e.g. TDT looks at number of parents heterozygous for an allele that pass that allele to affected offspring compared with the nondisease allele - so is really a family association study)
- Genetic control: extra genotyping Look for evidence of background population substructure and account for it
- Linkage vs. Association
 - Linkage analyse
 - Looks for relationship between a marker and disease within a family
 - May be different markers for each family
 - Yields broad chromosome regions harbouring many genes
 - Resolution comes from recombination events in families assessed
 - Good in terms of needing few markers
 - Poor in terms of finding specific variants involved
 - Association analyse
 - Looks for relationship between a marker and disease between families
 - Must be same marker in all families
 - Yields fine-scale resolution of genetic variants
 - Resolution comes from ancestral recombination events
 - Good in terms of finding specific variants
 - Poor in terms of needing many markers