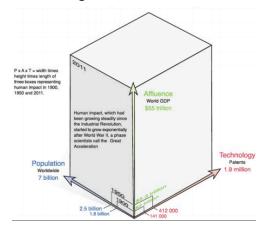
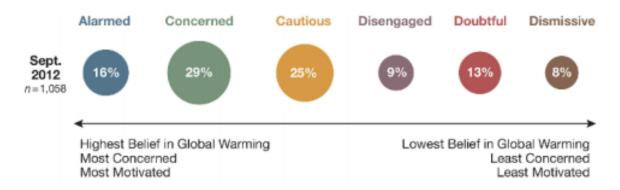
#### **EAE3132 – Future Climates**

#### Lecture 1 – Introduction

## Unit overview


- Section 1 Introduction and the physical science basis
- Section 2 Models, Scenarios and Emission Projections
- Section 3 Observed Climate Change
- Section 4 Climate Projections and Impacts
- Section 5 International Policy Considerations
- Section 6 Approaches to Climate Change Mitigation
- Section 7 Sectoral Approaches to Climate Adaptation
- Section 8 Case Study: Climate Adaptation in Australian Cities

# Anthropocene


- "Great acceleration" exponential increase in human impacts after WWII
  - Population, consumption, transport, tourism, land clearing

## Impact equation

- Impact = Population X Affluence X Technology
- Human impact is driven by -
  - Population 7 billion (only 2.5 billion in 1950)
  - Affluence World GDP \$55 trillion (\$5.3 trillion in 1950)
  - Technology 2 million patents (400,000 in 1950)



It is hard to communicate a consistent message to a sceptical public



# Lecture 2 – Physical Science: Radiation Laws and Characteristics, the Global Energy Balance and Recent Trends in Greenhouse Gases

The nature of energy in the Earth-Atmosphere System

- Energy = the capacity for doing work
- Energy comes from outside the system (sun)
  - <u>Radiant Energy</u> is energy associated with electromagnetic waves propagating through space
    - Initial energy source that fuels nearly all processes in atmosphere
  - <u>Thermal Energy</u> is energy associated with the ability of one body or substance to raise the temperature of a cooler one
  - o <u>Potential Energy</u> is energy due to position
    - e.g. moisture in a cloud about to fall as rain
  - o Kinetic Energy is energy due to motion, e.g. air in motion

Energy is only transferred in three ways -

- Radiation of electromagnetic waves propagated through space
- **Conduction** or transfer of energy in a substance by means of molecular excitation without any net external motion
- **Convection** or the transfer of energy by mass motions within a fluid or gas, resulting in actual transport of energy
  - Advection = horizontal motion

Energy flow through a simple climate system

- First Law of Thermodynamics states that energy can neither be created nor destroyed. This leaves only two possibilities; either
  - Energy input = energy output OR
  - Energy input = energy output +/- energy storage change



## **Electromagnetic Radiation**

- Radiation is the transfer of energy by rapid oscillations of electromagnetic fields
- The most important general characteristic is its wavelength (crest-to-crest distance)

All bodies that possess energy (temperature above 0 Kelvin) emit radiation at different wavelengths based on their temperature

- Efficiency of emission is dependent on its emissivity (∈)
- Where a body emits the maximum radiation for its temperature it is called a black body