
Distributed Systems Notes

Section 1: Introduction

What is a Distributed System:

- A collection of independent computers that appears to its users as a single

coherent system.

o Number of components

o Communication between components (message passing)

o Achieve more than each machine can individually

A computer network is just a collection of computers passing messages. E.g the

internet is a computer network. It does not appear as a single system to users.

Advantages of a distributed System:

- Resource sharing (disks, printers, files, processing power)

- Availability, scalability, reliability.

Disadvantages of a distributed System:

- Concurrency

- Heterogeneity

- No global clock

- Independent failures

The internet:

The internet is a large number of interconnected computer networks. Includes

features such as protocol for message passing and has services like world wide

web(www) and email and file transfer.

Intranets:

Portion of internet that is separately administered by organizations. Connected to

internet via a router. Firewalls to protect intranet from unauthorized messages.

Distributed System Challenges:

Heterogeneity: Distributed systems use hardware and software resources of

varying characteristics. E.g OS is linux or windows, or programming language. Can

solve problem by using middleware or agreeing on standard data/protocols.

Middleware: software layer between the distributed application and operating

systems. E.g Distributed file system, RPC (procedural language), RMI. (Object-

oriented language).

Openness: Ability to extend the system in different ways be adding hardware or

software resources. E.g adding interfaces.

Security:

- Confidentiality: Protect against unauthorized users

- Integrity: Protect against alteration and corruption

- Availability: protection against interference with access

Security mechanisms include encryption, authentication (passwords, keys),

authorization (access control)

Scalability: System needs to handle the growth of users and data.

- Cost of physical resources

- Controlling performance loss, avoiding bottle necks (good algorithms)

- Available resources

Failure Handling:

- Detecting, Masking (message retransmission), Tolerating (report failure to

user), recovery (fix corrupted data).

Concurrency: Multiple clients accessing the same resource at same time. (Use

semaphores)

Transparency: Hiding the components of a distributed system for the user and

application programmer. (Access, location, concurrency, failure and scaling

transparency)

Section 2: Models

Communication Paradigms (Low level to high level):

Interprocess communication: Multicast (message to multiple users), socket con.

Remote Invocation: Call a remote operation between dist. entities. RMI, RPC.

Indirect communication: Space uncoupling (senders don’t know who’s sending).

Time uncoupling (senders and receivers don’t need to exist at same time).

Roles and Responsibilities:

Client: Initiates connection to other process.

Server: Receives connection, offers service.

Peer: Client or server, connect to and receive connection from other peers.

Placement:

Caching: Storing data at places closer to client speeds up responses.

Mobile code: Transferring code to location most efficient. E.g running complex

query on another machine. Forcing client to execute code etc.

Mobile agents: Code and data together executes on the client PC. Also, agent may

check for updates to ensure software on client’s PC is up to date.

Architectural Patterns:

Client-Server: Client invokes services in server and results are returned.

Peer-to-Peer: Each process in the system plays a similar role as client or server.

Every component can make a connection to every other component as well as

receive a connection. There is no central server. Can be more secure than client-

server as it is not susceptible to a single point of failure. Bringing down all peers

harder than a central server. Peer is not more important than another peer.

Server and a bunch of

clients who can make

use of the server.

Client’s don’t talk to

one another.

Communication happens

through the server.

Distributed Architecture Variations:

Service Provided by multiple servers:

Proxy servers and caches:

Mobile Code and Agents:

- Objects may be replicated across servers

- Helps with load balancing

- Can offer service closer to client

- Survives failure of one server

- Cache is a store of recently

used objects closer to client

- Helps with load balance

- Speeds requests up

- Can use in authentication

- Downloaded and executed

by the client.

- Less resources used by

server -> scalable.

