
W2 PROBABILITY & STATISTICS REFRESHER 

Random variables 
• Economic and financial variables are by nature random. We do

not know what their values will be until we observe them
• A random variable is a rule that assigns a numerical outcome to

an event in each possible state of the world
• For e.g. the first wage offer that a BCom graduate receives in

the job market is a random variable. The value of ASX200 index
tomorrow is a random variable. Other examples are…

• A discrete random variable has a finite number of distinct
outcomes. For e.g. rolling a die is a random variable with 6
distinct outcomes

• A continuous random variable can take a continuum of values
within some interval. For e.g. rainfall in Melbourne in May can
be any number in the range from 0.00 to 200.00mm.

• While the outcomes are uncertain, they are not haphazard. The
rule assigns each outcome to an event according to a
probability

A random variable and its probability distribution 
• A discrete random variable is fully described by

• The probability density function (pdf) for a discrete random
variable X is a function f with f(xi) = pi, i = 1, 2, …, m and f(x) = 0
for all other x

• Probabilities of all possible outcomes of a random variable
must sum to 1

• Examples:
1. Rolling a die
2. Sex of a baby who is not yet born. Is it a random variable?
3. The starting wage offer to a BCom graduate

• The probability density function (pdf) for a continuous random
variable X is a function f such that P ( a ≤ X ≤ b ) is the area
under the pdf between a and b

• The total area under the pdf is equal to 1
• Example: Distribution of men’s height

• The area under the pdf is equal to 1

• The probability of that the height of a randomly selected man lies
in a certain interval is the area under the pdf over that interval

Features of probability distributions:  
1. Measures of Central Tendency (textbook ref: B-3)
• Expected value or mean of a discrete random variable is given by

• Intuitively, expected value is the long-run average if we observe X
many, many, many times

• It is convention to use the Greek letter μ to
denote expected value:

• Another measure of central tendency is the median of X, which is
the “middle-most” outcome of X,
i.e. xmed such that P ( X ≤ xmed) = 0.5

• Finally, there is the mode which is the most likely value, i.e. the
outcome with the highest probability. It is not a widely used
measure of central tendency

2. Measures of dispersion (textbook ref: B-3)
• Variance of a random variable:

• Variance is a measure of spread of the distribution of X around
its mean

• If X is an action with different possible outcomes, then Var(X)
gives an indication of riskiness of that action

• Standard deviation is the square root of the variance. In
finance, sd is called the volatility in X

• The advantage of sd over var is that it has the same units as X

Properties of the Expected Value (textbook ref: B-30

1. For any constant c, E(c) = c
2. For any constants a and b,

E( aX + b ) = aE( X ) + b

3. Expected value is a linear operator, meaning that expected

value of sum of several variables is the sum of their expected 
values:


E( X + Y + Z ) = E( X ) + E( Y ) + E( Z )

• The above three properties imply that for any constants a,

b, c and d and random variables X, Y and Z,
E( a + bX + cY + dZ ) = a + bE( X ) + cE( Y ) + dE( Z )


Question (Answer: B) 

• It is important to have in mind that E is a linear operator, so it
“goes through” sums of random variables, but it does not go
through non-linear transformations of random variables. For
example:

• Using properties of expectations, we can now show that
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Properties of the Variance (textbook ref: B-3) 
1. For any constant c, Var(c) = 0
2. For any constants a and b,

3. There is a third property related to the variance of linear
combinations of random variables that is very important and
we will see later after we introduce the covariance

Question (Answer: A) 

Properties of the Conditional Expectation 
• Conditional expectation of Y given X is generally a function of X
• Property 1: Conditional on X, any function of X is no longer a

random variable and can be treated as a known constant, and
then the usual properties of expectations apply. For example, if
X, Y and Z are random variables and a, b and c are constants,
then

• Property 2: If E( Y | X ) = c  where c  is a constant that does not
depend on X , then E( Y ) = c . This is intuitive: if no matter what
X  happens to be, we always expect Y  to be c , then the
expected value of Y  must be c regardless of X, i.e. the
unconditional expectation of Y must be c.

Important features of joint probability distribution of two 
random variables: Measures of Association (textbook ref: B-4) 
• Statistical dependence tells us that knowing the outcome of

one variable is informative about probability distribution of
another

• To analyse the nature dependence, we can look at the joint
probability distribution of random variables

• This is too complicated when random variables have many
possible outcomes (e.g. per capita income and life span, or
returns on Telstra and BHP stocks)

• We simplify the question to: when X is above its mean, is Y
more likely to be below or above its mean?

• This corresponds to the popular notion of X and Y being
“positively or negatively correlated”

Covariance 
• Question: “when X is above its mean, is Y more likely to be below

or above its mean?”
• We can answer this by looking at the sign of the covariant between

X and Y defined as:

• If X and Y are independent Cov(X,Y) = 0
• For any constants a1, b1, a2 and b2

Correlation 
• Only the sign of covariance is informative. Its magnitude changes

when we scale variables

• A better and unit free measure of
association is correlation which is
defined as:

• Correlation is always between -1 and +1, and its magnitude, as
well as its sign, is meaningful

• Correlation does not change if we change the units of
measurement

Variance of sums of variables: Diversification (textbook ref: B-4) 
• One of the important principles of risk management is “Don’t put

all your eggs in one basket”
• The scientific basis of this is that:

• Example. You have the choice of buying shares of company A with
mean return of 10 percent and standard deviation of 5%, or shares
of company B with mean return of 10% and sd of 10%. Which
would you prefer?

• Obviously A is less risky, and you prefer A to B
• Now consider a portfolio of investing 0.8 of your capital in

company A and the rest in B, where, as before, A has mean return
of 10% and sd of 10%. What are the return and the risk of this
position with the added assumption that the returns to A and B are
independent

• Denoting the portfolio return by Z, we
have

• We can see that this portfolio has the
same expected return as A, and is safer than A

Diversification in econometrics - Averaging (lect 2 - 1:18) 
• Suppose we are interested in starting salaries of BCom graduates.

This is a random variable with many possibilities and a probability
distribution

• Let’s denote this random variable by Y. We also denote its
population mean and variance by μ and σ2. We are interested in
estimating μ, which is the expected wage of a BCom graduate

• Suppose we choose one BCom graduate at random and
denote his/her starting salary by Y1. Certainly Y1 is also a
random variable with the same possible outcomes and
probabilities as Y. Therefore, E(Y1) = μ. So it is OK to take the
value of Y1 as an estimate of μ, and the variance of this
estimator is σ2.

• But if we take 2 independent observations and use their
average as our estimator of μ, we have:

• Now consider a sample of n independent observations of
starting salaries of BCom graduate {Y1, Y2,…, Yn)

• Y1 to Yn are i.i.d. (independent and identically distributed) with
mean μ and variance σ2

• Their average is a portfolio of that gives each of these n
random variables the same weight of 1/n. So

• The samples average has the same expected value as Y but a
lot less risk. In this way, we use the scientific concept of
diversification in econometrics to find better estimators!

Key concepts and their importance  
• Business and economic variables can be thought of as

random variables whose outcomes are determined by their
probability distribution
• A measure of central tendency of the distribution of a

random variable is its expected value
• Important measures of dispersion of a random variable are

variance and standards deviation. These are used as
measures of risk

• Covariance and correlation are measures of linear statistical
dependence between two random variables

• Correlation is unit free and measures the strength and
direction of association

• Statistical dependence or association does not imply
causality

• Two random variables that have non-zero covariance or
correlation are statistically dependent, meaning that
knowing the outcome of one of the two random variables
gives us useful information about the other

• Averaging is a form of diversification and it reduces risk
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Estimators and their Unbiasedness 
• Estimator is a function of sample data
• An estimator is a formula that combines sample information

and produces an estimate for parameters of interest
• Example: Sample average is an estimator for the population

mean
• Example:     = (X’X)-1 X’y is an estimator for the parameter

vector 𝛽 in the multiple regression model. (Population beta is a 
fixed vector)


• Since estimators are functions of sample observations, they…
change as the sample changes unlike the fixed population beta

• While we do not know the values of population parameters, we
can use the power of mathematics to investigate if the
expected value of the estimator is indeed the parameter of
interest

• Definition: An estimator is an unbiased estimator of a parameter
of interest if its expected value is the parameter of interest

The Expected Value of the OLS Estimator
• Under the following assumption, 

Multiple Regression Model 

• We use an important property of conditional expectations to
prove that the OLS estimator is unbiased: if E(z | w) = 0 
E(g (w) z) = 0 for any function g.
For example E(wz) = 0, E(w2z) = 0, etc.


• Now let’s show 

• The assumption of no perfect collinearity (E.2) is immediately

required because…
S1: Using the population model (Assumption E.1), substitute for y 
in the estimator’s formula and simplify


S2: Take expectations


Using Assumption E.3, since E(u | X) = 0 ⇒ E((X’X)-1X’u) = 0 
• Note: all assumptions were needed and were used in this proof

̂β

E ( ̂β ) = β

E ( ̂β ) = β

• Are these assumptions too strong?
• Linearity in parameters is not too strong, and does not

exclude non-linear relationships between y and x
(more on this later)

• Random sample is not too strong for cross-sectional
data if participation in the sample is not voluntary.
Randomness is obviously not correct for time series
data

• Perfect multicollinearity is quite unlikely unless we
have done something silly like using income in
dollars and income in cents in the list of independent
variables, or we have fallen into the “dummy variable
trap” (more on this later)

• Zero conditional mean is not a problem for
predictive analytics, because for best prediction, we
always want our best estimate of E( y | x1, x2,…., xk)
for a set of observed predictors

• Zero conditional mean can be a problem for
prescriptive analytics (causal analysis) when we
want to establish the causal effect of one of the x
variables, say x1 on y controlling for an attribute that
we cannot measure. E.g. Causal effect of education
on wage keeping ability constant:

•    Is a biased estimator of 𝛽1
• This is referred to as “omitted variable bias”
• One solution is to add a measurable proxy for ability,

e.g. IQ
• Zero conditional mean can be quite restrictive in

time series analysis as well
• It implies that the error term in any time period t is

uncorrelated with each of the regressors, in all time
periods, past, present and future

• Assumption MLR.4 is violated when the regression
model contains a lag of the dependent variable as a
regressor. E.g. we want to predict this quarter’s GDP
using GDP outcomes for the past 4 quarters

• In this case, the regression parameters are biased
estimators

The Variance of the OLS Estimator 
• Coming up with unbiased estimators is not too hard.

But how the estimates that produce are dispersed
around the mean determines how precise they are

• To study the variance of   , we need to learn about
variances of a vector of random variables (var-cov
matrix)

̂α1

̂β

• We introduce an extra assumption:

• Under these assumptions, the variance-covariance matrix of the OLS
estimator conditional on X is 
because (in lecture notes L4 S25)

• We can immediately see that given X the OLS estimator will be more precise
(i.e. its variance will be smaller) the smaller σ2 is

• It can also be seen (not as obvious) that as we add observations to the
sample, the variance of the estimator decreases, which also makes sense

• Gauss-Markov Theorem: Under Assumptions E.1 to E.4 (or MLR.1 to MLR.5)
    is the best linear unbiased estimator (B.L.U.E) of 


• This means that there is no other estimator that can be written as a linear
combination of elements of y that will be unbiased and will have a lower
variance than 


• This is the reason that everybody loves the OLS estimator

Estimating the Error Variance 
• We can calculate   , and we showed that

but we cannot compute this because
we do not know σ2:

• An unbiased estimator of σ2 is:

• The square root of             is reported by views in regression output under 
the name standard error of the regression, and it is a measure of how 
good the fit is (the smaller, the better) 


• Why do we divide SSR by n - k - 1 instead of n?
• In order to get an unbiased estimator of σ2: 

If we divide by n the expected value of the estimator will be slightly different
from the true parameter (proof of unbiasedness of      is not required)

• Of course if the sample size n is large, this bias is very small
• Think about dimensions: ŷ is in the column space of X, so it is in a subspace

with dimension k + 1

• û is orthogonal to column space of X, so it is in a subspace with dimension

n - (k  + 1) = n - k - 1. So even though there are n coordinates in û, only
n - k - 1 of those are free (it has n - k - 1 degrees of freedom)

̂β

β̂β

̂β

̂σ 2, ̂σ ,

̂σ2

12 of 35



• For H1 : 𝛽j ≠ 0

• If tcalc (the value of the t-statistic in our sample) falls in the
critical region, we reject the null

• When we reject the null, we say that xj is statistically significant
at the α% level

• When we fail to reject the null, we say that xj is not statistically
significant at the α =% level

• We can use the t test to test the null hypothesis: 

where r is a constant, not necessarily zero. Under the 
assumptions of CLM, we know that: 

So we test the null using this t statistic

• Percentiles of t distribution with various degrees of freedom are

given in Table G.2 on page 833 (5th edition) of the textbook

Confidence Intervals 
• Another way to use classical statistical testing is to construct a

confidence interval using the same critical value as was used
for a two-sided test

• A (1 - α)% confidence interval is defined as 

where c is the (1-    ) percentile of a tn-k-1 distribution

• The interpretation of a (1 - α)% confidence interval is that the

interval will cover the true parameter with probability (1 - α)
• If the confidence interval does not contain zero, we can deduce

that xj is statistically significant at the α% level

p-value of a test
• An alternative to classical approach to hypothesis testing is to

ask “based on the evidence in the sample, what is the value
that for all significance levels less than that value the null would
not be rejected, and for all significance levels bigger than that,
the null would be rejected?”

• To find this, need to compute the t statistic under the null, then
look up what percentile it is in the tn-k-1 distribution

• This value is called the p-value
• Most statistical packages report the p-value for the null of 𝛽j = 0,

assuming a two-sided test. Obviously, if you want this for a one-
sided alternative, just divide the two-sided p-value by 2

• We use the result on the t distribution to test the null hypothesis
about a single 𝛽j

• Most routinely we use it to test if controlling for all other x, xj has
no partial effect on y:

H0 : 𝛽j = 0
for which we use the t statistic (or t ratio) 

which is computed automatically by most statistical packages 
for each estimated coefficient


• But to conduct the test we need an alternative hypothesis

• The alternative hypothesis can be one-sided, such as H1 : 𝛽j < 0
or H1 : 𝛽j > 0, or it can be two-sided H1 : 𝛽j ≠ 0

• The alternative determines what kind of evidence is considered
legitimate against the null. For example, for H1 : 𝛽j < 0 we only
are excited to reject the null if we find evidence that it is
negative. We won’t be interested in any evidence that 𝛽j is
positive, and we won’t reject the null if we found such evidence

• Example: The effect of missing lectures on final performance,
the alternative hypothesis is that missing lectures has negative
effect on your final, even after controlling for how smart you are.
We are not interested in any evidence that missing lectures
improves final performance

• With two sided alternatives, we take any evidence that 𝛽j  may
not be zero, whether positive or negative, as legitimate

• We also need to specify α the size or the significance level of
the test, which is the probability that we wrongly reject the null
when it is true (Type I error)

• Using the tn-k-1 distribution, the significance level and the type of
alternative, we determine the critical value that defines the
rejection region

• For H1 : 𝛽j > 0

• For H1 : 𝛽j < 0

Example: Effect of missing classes on the final score


Testing multiple linear restrictions: The F test 
• Sometimes we want to test multiple restrictions. For example in

the regression model β

we are always interested in the overall significance of the model
by testing 

or we may be interested in testing

or even a more exotic hypothesis such as:


• The first null involves   4   restrictions, the second involves ___
restriction and the third involves ___ restrictions

• The alternative can only be that at least one of these restrictions
is not true

• The test statistic involves estimating two equations, one without
restrictions (the unrestricted model) and one with the
restrictions imposed (the restricted model), and seeing how
much their sum of squared residuals differ

• This is particularly easy for testing exclusion restrictions like the
first two nulls on the previous slide

Example: for

                               (note: 2 restrictions)


the alternative is:


the unrestricted model is:


and the restricted model is:

α
2

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + u

H0 : β1 = β2 = β3 = β4 = 0

H0 : β3 = β4 = 0

H0 : β1 = − β2, β3 = β4 = 0

H0 : β3 = β4 = 0

H1 : at lea st one of β3 or β4 i s n ot zero

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + u (UR)

y = β0 + β1x1 + β2x2 + u (R)
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Models involving logarithms: log-level 
• This is not satisfactory because it predicts that regardless of

what your wage currently is, an extra year of schooling will add
$42.06 to your wage

• It is more realistic to assume that it adds a constant percentage
to your wage, not a constant dollar amount

• How can we incorporate this in the model?

• In our example, we use natural logarithm of wage as the
dependent variable

• Holding IQ and u fixed

• Useful result from calculus

• This leads to a simple interpretation of 𝛽1 :

• If we do not multiply by 100, we have the decimal version (the
proportionate change)

• In this example, 100𝛽1 is often called the return to education
(just like an investment). This measure is free of units of
measurement of wage (currency, price level)

• Let’s revisit the wage equation

• These results tell us that…
• Warning: This R-squared is not directly comparable to the

R-squared when wage is the dependent variable. We can only
compare R-squared of two models if they have the same
dependent variable. The total variation (SSTs) in wagei and
log(wagei) are completely different

Models involving logarithms: level-log 
• We can use logarithmic transformation of x as well
•

• Example: The context: determining the effect of cigarette 
smoking during pregnancy on health of babies. Data: birth 
weight in kg, family income in $s, mother’s education in years, 
number of cigarettes smoked per week by the mother during 
pregnancy


• The coefficient of log(finc): Consider newborn babies whose
mothers have the same level of education and the same
smoking habits. Every percentage increase in family income
increases the predicted birth weight by 0.0005kg =  0.5g

Models involving logarithms: log-log 
• log of y on log of x:

• Example 6.7 in textbook: Predicting CEO salaries based on
sales, market value of the firm (mktval) and years that CEO has
been in his/her current position (tenure): 

The coefficient of log(sales): In firms with the exact same market 
valuation with CEOs who have the same level of experience, a  
1 percent increase in sales increases the predicted CEO salary 
by 0.16%


Considerations for using levels or logarithms (see 6-2a) 
1. A variable must have a strictly positive range to be a

candidate for logarithmic transformation
2. Thinking about the problem: does it make sense that a unit

change in x leads to a constant change in the magnitude of y
or a constant % change in y?

3. Looking at the scatter plot, if there is only one x
4. Explanatory variables that are measured in years, such as

years of education, experience or age, are not logged
5. Variables that are already in percentages (such as interest rate

or tax rate) are not logged. A unit change in these variables
already is a 1 percent change

6. If a variable is positively skewed (like income or wealth), taking
logarithms makes it distribution less skewed

Other non-linear models: Quadratic terms 
• We can have x2 as well as x in a multiple regression model:

• In this model 

that is, the change in predicted y as x increases depends on x

• Here, the coefficients of x and x2 on their own do not have

meaningful interpretations, because…
•

Examples of the quadratic model 
• Sleep and age: Predicting how long women sleep from their

age and education level. Data: age, years of education, and
minutes slept in a week recorded by women who participated
in a survey

• Keeping education constant, the predicted sleep reaches its
minimum at the age           = 42.5

• House price and distance to the nearest train station: 
Data: price (000$s), area (m2), number of bedrooms and
distance from the train station (km) for 120 houses sold in a
suburb of Melbourne in a certain month:

• The ideal distance from the train station is             = 0.85km 
because…

Considerations for using a linear or quadratic model 
1. Thinking about the problem: is a unit increase in x likely to

lead to a constant change in y for all values of x, or is it likely
to lead to a change that is increasing or decreasing in x?

2. Is there an optimal or peak level of x for y? Example: wage
and age, house price and distance to train station

3. If there is only one x, looking at scatter plot can give us
insights

4. In multiple regression, there are tests that we can use to
check the specification of the functional form (RESET test, to
be covered later)

5. When in doubt, we can add the quadratic term and check its
statistical significance, or see if it improves the adjusted R2

49.3
2 × 0.58

1169.71
2 × 687.64
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Transformation of persistent time series data 
• A number of economic and financial series, such as interest rates,

foreign exchange rates, price series of an asset tend to be highly
persistent

• This means that the past heavily affects the future (but not vice versa)
• A time series can be subject to different types of persistence

(deterministic or stochastic)
• A common feature of persistence is lack of mean-reversion. This is

evident by visual inspection of a line chart of the time series

Empirical example 
• E.g. Below is displayed the Standard and Poors Composite Price

Index from January 1985 to July 2017 (monthly observations)

Transformation of persistent time series data (cont.) 
• In such cases the researcher transforms the time series by (log)

differencing over the preceding period
• The transformed series is then easier to handle and has more

attractive statistical properties
• More precisely, assume that the S&P price index at time t is denoted

by Pt
• The said log differencing is expressed as: 

where 100 x rt denotes the %ΔPt (for small rt)


• By differencing the logarithmic transformation to our S&P500 price
series, we obtain the S&P500 returns (i.e. log-returns)

Model Selection Criteria 
• Parsimony is very important in predictive analytics (which

includes forecasting). You may have heard about the KISS
principle. If not, google it!

• We want models that have predictive power, but are as
parsimonious as possible

• We cannot use R2 to select models, because R2 always
increases as we make the model bigger, even when we
add irrelevant and insignificant predictors

• One can use t-stats and drop insignificant predictors, but
when there are many predictors, and several of them are
insignificant, the model that we end up with depends on
which predictor we drop first

• Model selection criteria are designed to help us with
selecting among competing models

• All model selection criteria balance the (lack of) fit of the
model (given by its sum of squared residuals) with the size
of the model (given by the number of parameters)

• These criteria can be used when modelling time series
data as well

• There are many model selection criteria, differing on the
penalty that they place on the lack of parsimony

1. Adjusted R2 (also known as R2)

2. Akaike Information Criteria (AIC)

3. Hannan-Quinn Criterion (HQ)

4. Schwarz or Bayesian Information Criterion (SIC or BIC)

• c1, c2 and c3 are const constants that do not depend on
the fit or number of parameters, so play no important role.
ln is the natural logarithm. Also, all models are assumed to
include an intercept

• BIC gives the largest penalty to lack of parsimony, i.e. if we use
BIC to select among models, the model we end up with would
be the same or smaller than the model that we end up with if
we used any of the other criteria

• The order of the penalties that each criterion places on
parsimony relative to fit is (for n >16)

• Remember that with BIC, HQ or AIC, we choose the model with
the smallest value for the criterion, whereas with R2, we choose
the model with the largest R2

• Different software may report different values for the same
criterion. That is because some include c1, c2 and c3 and some
don't. The outcome of the model selection exercise does not
depend on these constants, so regardless of the software, the
final results should be the same.

• Example: Making an app to predict body fat using height (H),
weight (W) and abdomen circumference (A)

• For different class of models, experts use different criteria
• My favourite is HQ (because of my research on multivariate

time series, and because Ted Hannah was a great Australian
statistician), although not all software report HQ

Confidence intervals for the Conditional Mean versus 
Prediction Intervals 
• Remember that the population model

• Our estimated regression model provides

• Comparing (3) and (2), we see that ŷi gives us the best estimate
of the conditional expectation of yi given xi1,…., xik


• Also, since ui is not predictable given xi1,…., xik, ŷi is also our 
best prediction for yi
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Solution 1: Robust Standard Errors 
• Since OLS estimator is still unbiased, we may be happy to live

with the OLS even if it is not BLUE. But the real practical
problem is that t- and F-statistics based on OLS standard errors
are unusable

• The square root of the diagonal elements of this matrix are
called White standard errors or robust standard errors, which
most statistical packages compute. These are reliable for
inference

• Back to the example. The option of robust standard errors is
under the Options tab of the equation window:

• With this option, we get:

• Compared with the original regression results:

Solution 2: Transform the Model 
a. Logarithmic transformation of y may do the trick: If

the population model has log(y) as the dependent
variable but we have used y, this kind of mis-specification
can show up as heteroskedastic errors. So, if log-
transformation is admissible (i.e. if y is positive), moving
to a log model may solve the problem, and the OLS
estimator on the log-transformed model will then be
BLUE and standard errors will be useful. Of course when
we consider transforming y, we should think if a log-level
or a log-log model makes better sense

b. Weighted least squares: When there is good reason to
believe that variance of each error is proportional to a
known function of a single independent variable, then we
can transform the model in a way to eliminate HTSK and
then use OLS on the transformed model. This estimator is
the  weighted least squares (WLS) estimator, which we
derive on the next slide.

Weighted Least Squares 
• Suppose the model

• Multiplying both sides of equation (1) by eliminates 
HTSK because:

• The transformed (or “weighted”) model:

• More importantly, equation (2) has the same parameters as equation
(1). So, OLS on the weighted model will produce BLUE of 𝛽0  to 𝛽k
and we can test any hypotheses on these parameters based on the
weighted model.

• Note that the transformed model does not have a constant term,
and 𝛽0 is the coefficient of wi in the transformed model

• This estimator is called the weighted least squares (WLS) estimator
of 𝛽

• In the financial wealth example, the auxiliary regression suggests
that the variance changes with income. Since income is positive for
all observations (why is this important?), we hypothesise that
Var (ui | inci, agei) = σ2inci

• .

• The standard errors are now reliable for inference and for forming
confidence intervals
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