The Kinetic Chain

- OR segmental interaction
- How our different body segments interact to produce movement

Open Kinetic Chain

- One end of chain is fixed other is free to move
 - End of chain can move independently of the other end
- Push like pattern All segments move simultaneously
 - o Good for
 - High force
 - High accuracy
 - o Simultaneous joint angle changes can result in straight path of distal segment
 - Eg darts, basketball free throw
 - For accuracy
 - o Depending on orientation of segments, movement of proximal segments can influence distal
 - Proximal segments moved by large muscles
 - Distal segments working off moving proximal segments allows large forces to be produced
 - Ea shot put
 - For power
 - Speed is limited to speed of muscle shortening
- Throw like pattern proximal segments moving prior to distal segments
 - o Good for
 - High movement velocities
 - Less accuracy
 - o To generate momentum/speed
 - Transfer of angular momentum
 - Angular momentum = Moment of inertia x angular velocity
 - The moment of inertia
 - Mass x radius of gyration (distribution of mass with respect to a given axis of rotation) squared
 - Storage and release of elastic energy
 - Tendon stretches
 - In tennis serve
 - Need high velocity but also accuracy
 - Though will fault a lot
 - So next shot slower to increase accuracy
 - Summing momentum or velocity
 - Generating momentum
 - Use as many body parts as possible
 - Put body parts on optimum stretch
 - Sequence body parts from large to small
 - Each body part should make an optimum contribution
 - High ROM should be used
 - The velocity at the end of the chain depends upon the contribution of each segment
 - o The direction of release changes significantly as the point of release changes slightly
 - Decreases accuracy

Closed Kinetic Chain

- Both end of the chain are fixed
- No part of the chain can move independently of each other
- Push Like Pattern
 - o Simultaneous joint angle change leads to a push like movement pattern
 - o Ideal for high force production because the forces sum
 - End point of chain limited to moderate and low movement velocities determined by speed of muscle shortening
 - o Eg fend in rugby

Control of chain systems

- Both mono and biarticular muscle contribute to forces in limbs
 - o Monoarticular muscle cross one joint and so are activated to directly cause joint motion
 - Biarticular muscles cross two or more joints so contribute to more than one motion
 - Useful when two simultaneous movements are performed concurrently
 - Hip flexion and knee extension in kicking
 - Redistributes muscle torque, power and mechanical energy through a limb
 - Power of a hip extension during a vertical jump can aid knee extension
 - Eg rectus femoris flexes the hip and extends the knee while gastroc flexes the knee and plantar flexes the ankle
- Specificity of chain systems
 - o Controlling open and closed chains requires different muscle activation
 - o Muscle activation can be altered by training but changes are specific to training
 - So need to train movements specifically