Week 1 – Budget Constraint (Chapter 2)

- The economic theory of the consumer is very simple.
 - Economists assume that consumers choose the best bundle of goods that they can afford.
- To give meaning to this theory, we have to describe more precisely what we meant by 'best' and 'can afford'.

2.1 The Budget Constraint

- Suppose that there is some set of goods from which the consumer can choose.
 - For our purposes, it is convenient to consider the case of **only two goods**.
- We will indicate the **consumption bundle** by (x_1, x_2) .
 - \triangleright This is simply a list of two numbers that tells us how much the consumer is choosing to consumer of good 1, x_1 , and good 2, x_2 .
 - The consumer's bundle is denoted by a single symbol X, where $X = (x_1, x_2)$.
- Suppose we can observe the prices of the two goods, (p_1, p_2) , and the amount of money the consumer has to spend, m.
 - Then the **budget constraint** of the consumer can be written as:

$$p_1 x_1 + p_2 x_2 \le m$$

- ightharpoonup Here p_1x_1 is the amount of money that the consumer is spending on good 1, and p_2x_2 is the amount of money that the consumer is spending on good 2.
- The budget constraint of the consumer requires that the amount of money spent on the two goods be **no more** than the total amount the consumer has to spend.
- The **budget set** of the consumer is the **set of affordable consumption bundles** at prices (p_1, p_2) and income m.
 - ightharpoonup Budget set: $\{X = (x_1, x_2): p_1x_1 + p_2x_2 \le m\}$

2.2 Two Goods are Often Enough

- The **two-good assumption** is more **general** than it appears.
 - ➤ We can interpret good 2 as represents **everything else** that the consumer may want to consume.
- Good 2 represents a composite good.

- ➤ Such a composite good is measured in dollars to be spent on goods other than good 1.
- It is convenient to think of good 2 as being the dollars that the consumer can use to spend on other goods.
 - ➤ Under this interpretation, the price of good 2 will automatically be \$1, since the price of one dollar is one dollar.
- Thus, the **budget constraint** will take the form:

$$p_1 x_1 + x_2 \le m$$

- This equation is just a special case of the formula above, with $p_2 = 1$.
 - This is known as the **numeraire price**, which we assign to good 2.

2.3 Properties of the Budget Set

• The **budget line** is the set of consumption bundles that cost exactly *m*:

$$p_1 x_1 + p_2 x_2 = m (*)$$

These are bundles of goods that <u>just</u> exhaust the consumer's income.

• We can rearrange the equation to obtain:

$$x_2 = \frac{m}{p_1} - \frac{p_1}{p_2} x_1$$

- ightharpoonup This is a straight line with a slope of $-\frac{p_1}{p_2}$ and vertical intercept $\frac{m}{p_2}$.
- The slope of the budget line has a nice economic interpretation.
 - ➤ The slope measures the amount of good 2 forgone in order to consume one additional unit of good 1.
 - Economic interpretation: The slope represents the **opportunity cost** of consuming **good 1**. (Note: $OC_{good\ 1} = \frac{1}{OC_{good\ 2}}$)

- The **intercepts** of the **budget line** also have an interpretation.
 - The vertical intercept represents the amount of good 2 that can be consumed if the total amount of money the consumer has to spend is entirely spent on good 2 i.e. $\frac{m}{p_2}$.
 - The horizontal intercept represents the amount of good 1 that can be consumed if the total amount of money the consumer has to spend is entirely spent on good 1 i.e. $\frac{m}{p_1}$.

2.3 How the Budget Line Changes

- When prices and incomes **change**, the set of goods that a consumer can afford changes as well.
 - ➤ How do these changes affect the budget set?

2.3.1 Changes in Income

- From the equation of the budget line (*), it is clear that an increase in income, m, will increase the vertical intercept but will not affect the slope.
 - This increase in income will result in a **parallel shift upward** (*outward*) of the budget line.
 - A decrease in income will result in a **parallel shift downward** (*inward*).

2.3.2 Change in Prices

- From (*), it is clear that if the price of (say) good 1 increases then the (absolute) slope $(\frac{p_1}{p_2})$ of the budget line also increases but the vertical intercept $(\frac{m}{p_2})$ does not change.
 - This leads to a **steeper budget line** with a lower horizontal intercept $\left(\frac{m}{p_1}\right)$.

- If the price of good 2 increases then the (absolute) slope $(\frac{p_1}{p_2})$ of the budget line decreases but the horizontal intercept $(\frac{m}{p_1})$ does not change.
 - This leads to a **flatter budget line** with a lower vertical intercept $(\frac{m}{p_2})$.
- If the prices of both goods increase by the **same factor**, t, at the **same time**, then both the horizontal and vertical intercepts will decrease by the **same factor**, shifting the budget line inward.
 - \triangleright This is **equivalent** to decreasing the income m by the factor t.
- We can see this algebraically:
 - Suppose that the original budget line is: $p_1x_1 + p_2x_2 = m$
 - > If the price of these goods increase by a factor t then:

$$tp_1x_1 + tp_2x_2 = m \rightarrow p_1x_1 + p_2x_2 = \frac{m}{t}$$

- ➤ Thus, multiplying both prices by a constant amount t is equivalent to a decrease in income by the same factor t.
- ➤ If prices and income increase by factor t, the budget line won't change.

2.5 Taxes, Subsidies and Rationing

 Economic policy often uses tools that affect a consumer's budget constraint, such as taxes.

2.5.1 Taxes

- If the government imposes a **quantity tax**, the consumer has to pay a certain amount to the government for each unit of the good he purchases.
 - Example: In the US, the federal gas tax is 15 cents per gallon.
- How does a quantity tax affect the budget line of a consumer?
 - From the viewpoint of a consumer, the tax effectively increases the price of the good.
 - Thus, a quantity tax of t dollars per unit of good 1 simply changes the price of good 1 from p_1 to $p_1 + t$.
 - This implies that the **budget line** becomes **steeper**.
- Another kind of tax is a **value tax (ad valorem tax or sales tax)**, where a tax is imposed on the **value of the good** rather than the quantity purchased.
 - Example: If the sales tax is 6%, then a good worth \$1 will actually sell for \$1.06.
 - \triangleright If good 1 has a price p_1 but is subject to a sales tax at rate τ , then the actual price facing the consuming is $(1 + \tau)p_1$.
 - The consumer has to pay p_1 to the supplier and τp_1 to the government for each unit of the good so that the total cost of the good to the consumer is $(1 + \tau)p_1$.

2.5.2 Subsidies

- A subsidy is the opposite of a tax.
 - ➤ Quantity subsidy: the government gives the consumer an amount of money that depends on the amount of the good consumed.
 - o If the subsidy is s dollars per unit consumed of good 1, then the actual price of good 1 is $p_1 s$.
 - Since the quantity subsidy lowers the actual price of the good, this results in a **flatter budget line**.
 - ➤ Ad valorem (value) subsidy: a subsidy based on the price of the good being consumed.
 - If the price of good 1 is p_1 and an ad valorem subsidy is imposed on the good at a rate σ , then the actual price of the good is $(1 \sigma)p_1$.

2.5.3 Effect on Budget Line of a Consumer – Taxes and Subsidies

- In summary, taxes increase the price of a good whilst subsidies decrease the price of the good.
- Another kind of tax or subsidy that the government might use is a **lump-sum** tax or subsidy.
 - Lump-sum tax: a tax where the government takes away a fixed amount of money from the consumer, regardless of their behaviour.
 - O This **reduces** the money income m.
 - o Thus, there is an inward shift of the budget line.
 - Lump-sum subsidy: a subsidy where the government provides a fixed amount of money to the consumer, regardless of their behaviour.
 - This **increases** the money income m.
 - o Thus, there is an **outward shift of the budget line**.
- Quantity taxes and value taxes **tilt** the budget line one way or the other, depending on which good is being taxed.
 - ➤ Similarly, quantity subsidies and value subsidies tilt the budget line one way or the other, depending on which good is subsidised.
- Contrarily, a lump-sum tax or subsidy results in a **SHIFT** of the budget line.

2.5.4 Rationing

- Governments also sometimes impose rationing constraints.
 - > This means that the level of consumption for some good is **fixed** to be **no larger than a certain amount**.

- Suppose that good 1 was rationed so that no more than $\overline{x_1}$ could be consumed by a given consumer.
 - Then the **budget set** would appear as in the picture above.
 - ➤ It is the set of all affordable bundles of good 1 and good 2 with a piece lopped off
 - The lopped-off piece consists of all consumption bundles that are affordable but have $x_1 > \overline{x_1}$.

2.6 Example – Tax + Rationing

- Example: Consider a situation where a consumer could consume good 1 at a price of p_1 up to some level $\overline{x_1}$ (rationed amount), and then had to pay a quantity tax of t per unit in excess of $\overline{x_1}$.
 - ➤ The budget set for this consumer is depicted in the picture below.
- The budget line has a slope of $-\frac{p_1}{p_2}$ to the left of $\overline{x_1}$ and a slope of $-\frac{p_1+t}{p_2}$ to the right of $\overline{x_1}$.
 - Reason: After the rationed amount $\overline{x_1}$ is exceeded, the price of good 1 increases from p_1 to $p_1 + t$ due to the quantity tax. This increases the opportunity cost of consuming good 1, resulting in an increase in the (absolute) slope and causing the budget line to become **steeper**.

Taxing consumption greater than \overline{x}_1 . In this budget set the consumer must pay a tax only on the consumption of good 1 that is in excess of \overline{x}_1 , so the budget line becomes steeper to the right of \overline{x}_1 .

Week 2 (I) – Preferences (Chapter 3)

- Last chapter was devoted to clarifying the meaning of 'can afford'.
 - This chapter will be devoted to clarifying the economic concept of 'best things'.

3.1 Consumer Preferences

- We will suppose that given any two consumption bundles, $X = (x_1, x_2)$ and $Y = (y_1, y_2)$, the consumer can **rank** them based on their **desirability**.
 - ➤ <u>Desirability</u>: which bundle of goods the consumer would choose if given the option of both.
- If the consumer **prefers** bundle X to bundle Y, then bundle X is **strictly preferred** to bundle Y.
 - \triangleright That is, X > Y.
 - \triangleright Equivalently, $Y \prec X$.
- If the consumer is **indifferent** between X and Y, then they would be **equally** satisfied with bundle X as they would be with bundle Y.
 - \triangleright That is, $X \sim Y$.
- If the consumer **prefers** X to Y **or is indifferent** between them, then they **weakly prefers** bundle X to bundle Y.
 - \triangleright That is, $X \ge Y$.
- The relations of strict preference, weak preference and indifference are themselves **related**.
 - ➤ If a consumer weakly prefers X to Y, but also weakly prefers Y to X, then the consumer is **indifferent** between bundle X and bundle Y.
 - ightharpoonup That is, if $X \geq Y$ and $Y \leq X$, then $X \sim Y$.

3.2 Assumptions about Preferences

- For the sake of consistency of consumers' preferences, economists make assumptions about how preference relations work i.e. **axioms**.
- Complete: Any two bundles can be compared.
 - That is, given any bundles X and Y, we can assume that $X \ge Y$ or $Y \ge X$, or both, in which case $X \sim Y$.
- **Reflexive**: Any bundle is at least as good as itself.
 - \triangleright That is, $X \ge X$.
- <u>Transitive</u>: If X is weakly preferred to Y and Y is weakly preferred to Z, then X is weakly preferred to Z.