Acid Base Regulation

рΗ

٠

- Definition of pH
 - Negative logarithm of H expressed in mol/L
 - $pH = -loh H + so that H = 10^{-pH}$
- pH values in the body
 - ECF = 7.4
 - Cell = 7.2
 - Blood
 - Arterial = 7.4
 - Venous = 7.36
 - Lower because of CO2
 - Balance

٠

- Normal 7.35-7.45
 - Acidotic <7.35
 - <6.8 is fatal</p>
 - Alkalosis >7.45
 - >8.0 is fatal
- Biological importance
 - Enzymes function maximally at 7.2
 - High or low pH denatures proteins
 - H+ competes with Ca for binding
 - Important for regulating membrane potential

Uncontrolled input and outputs of acid and base

- Net acid input
 - Complete
 - Most from Carbon dioxide
 - Produced by all cells that use aerobic metabolism to produce ATP
 - 12-15 Mol/day
 - Via metabolism of all food groups
 - Sulphuric acid
 - From metabolism of sulphur containing amino acids
 - Urea
 - From amino acids with cationic side groups
 - Phosphoric acid
 - From phospholipids and phosphorylated proteins
 - Incomplete
 - Lactate
 - Carbohydrates in anaerobic exercise
 - Ketoacids
 - Fats from high fat diets in diabetics
 - Net base input
 - Complete
 - Bicarbonate
 - Amino acids with anionic side groups
 - Organic anions citrate and ascorbate
- Diet
 - Protein rich
 - Acid excess
 - Vegetable diet
 - Base excress
- Illness
 - Vomiting
 - Causes loss of HCI

- More basic
- Diarrhoea
 - Loss of bicarbonate
 - Increase in pH

Homeostasis of pH

- Short term
 - Seconds
 - Immediate neutralisation by buffers
 - Minutes
 - Continuous removal of CO2 by the lungs
 - Hours days
 - Maintenance of bicarbonate by the kidneys
- Long term
 - Input of excess acid/base = output of acid/base

Acids

- Acids are H+ donors, bases are H+ acceptors
 - Acid -> Base + H+
- Strong acids
 - Dissociates completely in water
 - Eg HCl is added to water to give a 1 mM concentration
 - $H+ + CI = so H=1mM = 10^{-3} M and pH = 3$
- Weak Acids
 - Only partially dissociate to give varying concentrations of the conjugate acid/base pair
 - Equilibrium constant for each conjugate acid/base pair
 - K_a = [base] x [H+]/ [acid]
 - K_a acid dissociation constant
 - Henderson Hasselbalch equation
 - $pH = pK_a + log [base]/[acid]$
 - Eg phosphate buffers
 - H₂PO₄ -> HPO₄² + H+
 - $pH = 6.8 + log [HPO_{4^{2}}]/[H_2PO_{4^{-}}]$
 - If the number mM of both acid and base are the same
 - pH will be the same as pKa
 - pH = 6.8 + log 5/5 = 6.8

Buffers

- Add 1 mM NCI to the phosphate buffer started off with 5 mM of both base and acid
 - \circ H₂PO₄-> HPO₄² + H+
 - \circ pH = 6.8 + log 5-1/5+1 = 6.62
- Adding 1mM of HCl
 - Changes water from 7 to 3 = 4 pH units
 - Changes phosphate buffer from 6.8 to 6.62
 - 0.18 pH units
- Determinants of buffering capacity
 - Change in pH when add 1mM HCl to 10 mM of phosphate buffer
 - \circ When initial pH = pKa
 - Change from 6.8 to 6.62
 - 0.18 pH units
 - When initial pH = pKa + 2
 - Change from 8.8 to 7.71
 - 1.1 pH units

- Buffering capacity is high when
 - Buffer concentration is high
 Starting pH = pKa
- ECF buffers •
 - Bicarbonate system
 - Bicarbonate / CO2 pair
 - Proteins haemoglobin and albumin
 - CO2 + H2O <-Carbonic Anhydrase-> H+ HCO3
 - OHb + H <-> HHb + O2

- HH equation
 - $pH = pKa + log[HCO3] / S \times pCO2$
 - HCO3 = 24mM
 - pCO2 = 40 mmHg
 - pKa = 6.1
 - S = 0.03mmol
 - pH = 6.1+log 24/0.03x40=6.1+log 24/1.2 = 7.4
 - Buffers all body acids except CO2
- Highly effective because
 - Plasma carbonate is high
 - Operates in conjunction with haemoglobic
 - Regulated open system
 - No conservation of mass
 - Much more effective than closed
 - 25.2 mM total carbonate for closed also you die
 - 13.2mM for open
 - Breathe off CO2 excess
 - Kidney's regulate bicarb

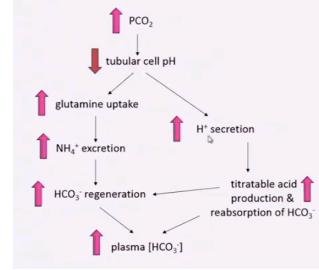
pH stabilisation by the kidney

- HCO3 is consumed as it buffers the non carbonic acids
- H2O + CO2 + HPO4²⁻ <-> HCO3⁻ + H2PO4⁻
- Role of the kidney is to ensure that
 - Filtered HCO3 is reabsorbed
 - Additional molecules are produced
 - Excess HCO3 is removed by reducing reabsorption
- Renal mechanisms
 - Reabsorption of filtered HCO3
 - In proximal tubule
 - Bicarb enters tubular
 - As sodium bicarbonate
 - Sodium moves down concentration gradient into the cell
 - The energy moves H+ into fluid from cell
 - Secondary active transport antiport
 - H+ binds with HCO3
 - = H2O + CO2
 - Both move into cell combines
 - Produces H+
 - Goes into fluid
 - And HCO3
 - Moves into peritubular capillaries
 - With sodium
 - Secondary active transport symport

- In collecting duct
 - Mostly the same
 - Uses pump as H+ concentration gradient is high
 - Needs ATP
 - Exchange of CI and HCO3 into blood
- HCO3 regeneration with excretion of titratable acids
 - Proximal tubule
 - 2Na + HPO4
 - Sodium moves into cell
 - H+ moves out

- H+ is buffered by base HPO4
 - Acid H2PO4 is excreted
- H+ is produced from H2O and CO2
 - Also HCO3
 - Moves into blood with sodium symport

- HCO3 regeneration with NH4 excretion
 - In proximal tubule
 - Glutamine is metabolised
 - Makes 2NH4
 - Antiport with Na
 - Excrete NH4
 - Converts to ketogluterate
 - Then converted to glucose
 - Via gluconeogeneris
 - By consuming 2 H+
 - Produced from 2x H2O + CO2
 - Also produces 2HCO3
 - Moves into blood with Na symport
 - Long term method
- Control
 De
 - Decreased body pH increases H+ secretion
 - Needed to reabsorb HCO3
 - Decreased body pH increases glutamine uptake
 - For producing new bicarb

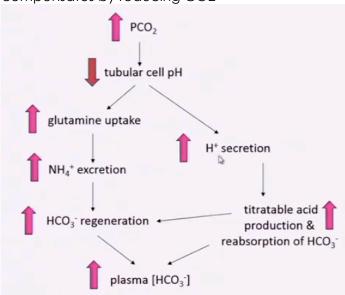

Disturbances of Acid Base Balance

Balance

- Arterial blood pH
 - Between 7.35-7.45
- Arterial plasma HCO3
 - ∘ 22-26mM
- Arterial pCO2
 - 35-45mmHg
- To be in balance all three must be in normal range
- Disturbances
 - pH = pKa + log HCO3/S x CO2
 - Fixed via
 - Buffering
 - By haemoglobin, plasma proteins, phosphates
 - Can't be buffered by carbonate
 - Can't buffer itself
 - Compensatory changes
 - Shift HCO3/CO2 ratio (so pH) back towards normal
 - Even though cause has not been fixed
 - Correction
 - Need to correct problem to return to balance
 - Respiratory
 - Acidosis
 - Increase in pCO2
 - From hypoventilation shallowing breathing
 - Lung diseases
 - Emphysema
 - Airway obstruction or chest injury
 - Inhibited respiratory drive
 - In brainstem respiratory centres
 - Brain injury
 - Drugs
 - Morphine, heroin, anaesthetics
 - Effect on pH

- Law of mass action
 - Carbonate buffering equation is shifted to the right
 H+ increases, pH decreased

- Increase in CO2
 - Decreases HCO3/CO2 ratio
 - = decrease in pH
 - = acidosis
- If CO2 increases, shouldn't HCO3 increase
 - At pH 7.4
 - HCO3 24mM
 - H+ 10^{-7.4} = 40nM
 - If CO2 doubles
 - Ka = 2(HCO3 x H+)/2(CO2)
 - Reaction continues until 40nM of CO2 and H2O combines
 - Giving an 40nM of both HCO3 and H+
 - H+ is doubled new steady state is reached
 - HCO3 is unchanged
 - Though not necessarily true in the body
 - Bc buffers
- Compensation
 - Kidney increases plasma HCO3
 - Back to ratio near normal pH


- Can take hours to days
- But balance not restored until hypoventilation is corrected
- Alkalosis
 - Decreased CO2
 - From hyperventilation
 - High altitudes
 - Sepsis, fever, brain damage, hysteria
 - Pregnancy
 - pH increased by reduced CO2
 - Increased ratio
 - Kidney compensates by reducing HCO3
 - Decrease reabsorption
 - Increase pH inhibits H+ secretion from tubular cells
 - Less of filtered HCO3 is reabsorbed
 - Plasma HCO3 falls
 - But HCO3 and CO2 is low so not in balance
- Metabolic
 - Acidosis

٠

• Decrease in HCO3

- From
 - Diarrhoea
 - Strenuous anaerobic exercise
 - Ketoacidosis
 - Renal failure

- pH decreased by reduced HCO3
 - Decreased ratio
- Lung compensates by reducing CO2

• Alkalosis

- Increase in HCO3
- Due to vomiting
 - Losing acid from stomach
 - So replace acid from lining in the stomach
 - Create H+ but also HCO3
 - Pump the H+ into stomach
 - HCO3 goes into blood
- pH increased by increased HCO3
 - Increased ratio
- Lungs compensate by increasing CO2
- But if we can just decrease HCO3 by not reabsorbing why does this occur
 - Bc when vomiting -
 - Causes dehydration
 - Expel Na and K
 - HCO3 can only be excreted with Na its counter ion
 - Na decrease RAAS system activated Na reabsorption increased
 - HCO3 excretion stopped and starts reabsorbing
 - Cannot be corrected until body Na is restored

| | рН | Primary
Change | Compensatory
change |
|-----------|------|-------------------|------------------------|
| Resp Acid | Low | CO2 high | HCO3 high |
| Resp Alk | High | CO2 low | HCO3 low |
| Met Acid | Low | HCO3 low | CO2 low |
| Met Alk | High | HCO3 high | CO2 high |