
41900 SECURITY FUNDAMENTALS

STUDY NOTES 2018

CONTENTS

INTRODUCTION TO INFORMATION SECURITY	2
HASH FUNCTION AND BASICS OF CIPHERS	6
PRNG & BLOCK CIPHER	8
AES & KEY MANAGEMENT	10
ASYMMETRIC KEY CRYPTOGRAPHY & RSA	11
AUTHENTICATION	13
DIGITAL SIGNATURES	16
SECURITY PROTOCOLS	18
CONFIDENTIALITY AND INTEGRITY	20
NUMBER THEORY	22
CRYPTOCURRENCIES AND BLOCKCHAIN	23

INTRODUCTION TO INFORMATION SECURITY

LECTURE 1

INFORMATION SECURITY

- Application of technology and processes to protect data from accidental or intentional misuse by known or unknown individuals, inside or outside of an organisation
- Technical aspects make up one-part Eg. Firewalls, encryption, access controls, etc.
- Increasingly important problem as hackers attempt to take advantage of an organisations network vulnerabilities

KEY TERMINOLOGY

- Cryptography Process of creation, development, application and testing of encryption methods
- Encryption Converting original message into a form unreadable by unauthorised individuals
- Cryptanalysis Process of breaking an encrypted message to obtain the original message
- Cryptology Consists of both cryptanalysis and cryptography

CIA TRIAD (ASPECTS OF SECURITY)

- Confidentiality Accessible only to authorised users Eg. Encryption, Authentication, Access Controls, Location
- Integrity Safeguarding accuracy/completeness Eg. Only entered/altered by authorised users, cannot be altered without detection Eg. Audit Trails, Checksums and Hashes
- Availability Ensuring authorised users have access to information when required, accessible from authorised locations, system resists failures and attacks Eg. Standby mechanisms, resistant to DoS attacks
- Authenticity Proof of a message's origin, integrity and freshness ie. Message is not a replay
- Non-Repudiation Authorship of a message cannot be disputed
- Covertness Message existence secrecy

PASSIVE/ACTIVE ATTACKS

- Passive
 - Do not involve modification or fabrication of data
 - Confidentiality Eg. Release message contents
 - o Covertness Eg. Traffic analysis
- Active
 - Fabrication Attack on Authenticity
 - Interruption Attack on Availability
 - Modification Attack on Integrity

TYPES OF CRYPTOGRAPHY

- Classical
 - DES (Data Encryption Standard)
 - AES (Advanced Encryption Standard)
- Public Key
 - o Diffe-Hellman
 - o RSA (Rivest-Shamir-Adleman)
- Checksums
 - HMAC (Hash-based message authentication code)

encryption plaintext confidential document, keep secret plaintext ciphertext key plaintext ciphertext ciphertext ciphertext ciphertext ciphertext

decryption

Informatio

(c) Interception

(a) Normal flow

Information

(b) Interruption

CLASSICAL CRYPTOGRAPHY

- Sender, receiver share common key
 - Keys may be the same or trivial to be derived from one another
 - Sometimes called Symmetric Cryptography
 - Using a single key for encryption/decryption
 - Plaintext and ciphertext are the same size
- Basic types:
 - o Transposition Ciphers
 - o Substitution Ciphers

PUBLIC KEY CRYPTOGRAPHY

- Two keys
 - o Private key Known to one individual
 - Public key Available to anyone
 - Public key, private key inverses
- Confidentiality Encipher using public key, decipher using private key
- Integrity/Authentication Encipher using private key, decipher using public key
- Sometimes referred to as Asymmetric Cryptography
- Public Key Cryptography requirements:
 - o Computationally easy to encipher or decipher a message given the appropriate key
 - Computationally infeasible to derive the private key from the public key
 - o Computationally infeasible to determine the private key from a chosen plaintext attack

CRYPTOGRAPHIC CHECKSUMS

- Mathematical function to generate a set of k bits from a set of n bits (where $k \le n$)
- Example: ASCII parity bit:
 - Has 7 bits; 8th bit is a 'parity' bit
 - Even parity Even number of 1 bits
 - Odd parity Odd number of 1 bits

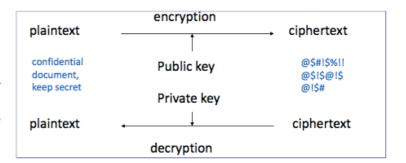
HMAC

- Make keyed cryptographic checksums from keyless checksums
- Keyless cryptographic checksum function, h, takes data in blocks of b bytes and outputs blocks of l bytes
- K' is cryptographic key length b bytes
 - o If short, padded with 0 bytes; If long, hash to length b
 - ipad is 00110110 repeated b times
 - opad is 01011100 repeated b times
- HMAC $h(k, m) = h(k' \oplus opad \mid \mid h(k' \oplus ipad \mid \mid m))$

BASIS FOR ATTACKS

- Mathematical attacks
 - Based on analysis of underlying mathematics
- Statistical attacks
 - Make assumptions about models of the language
 - Distribution of letters, pairs of letters (Di-grams), triples of letters (Tri-grams)
 - o Examine ciphertext, correlate properties with assumptions

DIGITAL SIGNATURES

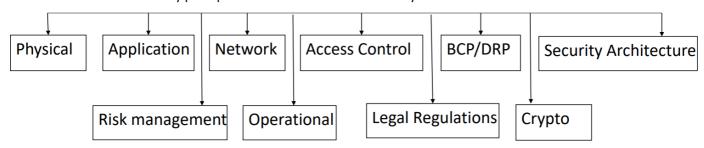

- Encrypted messages that can be mathematically proven to be authentic
- Created in response to rising need to verify information transferred via electronic systems
- Asymmetric encryption processes used to create digital signatures

DIGITAL CERTIFICATES

- Electronic document containing key value and identifying information about entity that controls key
- Digital signature attached to certificate's container file to certify file is from entity it claims to be from

MANDATORY SECURITY

- Bell and La Padula Security Policy
 - o Security levels Subjects have clearance levels, Objects have sensitivity levels
 - Unclassified < Confidential < Secret < Top Secret
 - Compartments also possible, combined to form partially ordered lattice
 - Security Properties:


- Simple Security Property Subject may not READ an object at a higher security level
- Star * Property Subject may not WRITE to any object at a lower security level

CRYPTO ATTACK METHODS

- Brute Force
 - Goes through all available keys, testing each until the correct key is found
 - o Main defence is to make at least 2128 possible keys, makes too time consuming to find key
 - o Effectiveness of attack can be enhanced by using more hardware
- Exploit
 - Finding a weakness within the system
 - o Encryption standards with known weaknesses are dropped quickly
 - o Networks exchanging encrypted data allow attackers to collect encrypted information to possibly mount an attack

INFORMATION ASSURANCE

- Combination of all security principles to ensure information security

PHYSICAL SECURITY

DATA CENTER

- Designed to include physical safeguards, each facilities needs are unique
- Physical access trumps ALL other forms of security

SECURITY PROCESS AND PLAN

- Effectiveness is ensured by making certain:
 - Threats have been identified
 - Associated vulnerabilities are characterised, prioritised and addressed
- Supervised and enforced by consistent and ongoing management
- Example:
 - Numerous layers of: Alarms, Video Cameras, Armed Guards, Electrical Fences
 - o Has separate emergency power plant, water system, and other facilities

APPLICATION SECURITY

- Data and critical business information is being exposed through:
 - Lack of Testing
 - Insecure Applications
 - o Human Error Eg. Sticky Notes
- Security must be an integral part of the application lifecycle
- Golden Rule You cannot test security! It must be designed into the application and verified throughout development

NETWORK SECURITY

- Network protocols are not secure:
 - Port scan/direct attack
 - Malicious websites
 - Social engineering
 - Phishing/Pharming
 - Denial of Service attacks
 - Insider attacks
 - Viruses/Worms
 - Information leakage
- Network hubs are insecure