Contents

INTRODUCTION	3
PORIFERA	8
PLACOZOA	12
CTENOPHORA	14
CNIDARIA	16
ECDYSOZOA	20
ANNELIDA	32
MOLLUSCA	41
ECHINODERMATA	51
HEMICHORDATA	58
CHORDATA	60
VERTEBRATA	64
AMPHIBIA	80
AMNIOTA	84
- REPTILES	88
- BIRDS	96
- MAMMAIS	113

PLACOZOA

"Small multicellular hairy sticky flat things"

- Two species described in this phylum
 - 1. Trichoplax adharens
 - 2. Treptoplax reptans
- Smallest amount of DNA yet measured for any animal sequenced
- Few thousand cells
- 4-5 cell types
- Capable of moving over <u>benthic substrate</u>
- 7 distinct clades (identified by 16S ribosomal sequencing)
- <u>Tropical/subtropical</u>
- <u>Calm, hard substrate</u> e.g. rocky shores
- <u>Pre-cambrian evolution</u>
- <u>Chemical deterrent defence</u> → possess several proteins in known venoms and Hydroids paralyse or die when fed *Trichoplax*

BODY PLAN

- No obvious back or front
- Distinctive top and bottom: top = protective; bottom = nutritive
- Movement by cilia or contraction of fibre cell layer
- No muscles
- No nerve net (but encodes for neurotransmission machinery)
- No apparent ECM (but encodes for ECM adhesion proteins)
- Encodes for large number of <u>transcription factors</u> <u>typically associated with cell differentiation</u>

5 CELL TYPES

- 1. **COVER CELL** = flagellated T-cells, nucleus connected to each other through belt desmosomes
- 2. **CYLINDRICAL CELLS** = flagellated cells
- 3. **GLAND CELLS** = <u>flagellated</u> cells
- 4. **FIBER CELLS** = <u>syncytial</u> (fused cells) forming a three-dimensional structure between top and bottom (<u>epithelioid</u>)
- 5. **MARGINAL CELLS** = thick cord of <u>pluripotent</u> (can differentiate) small <u>ovoid cells</u> around entire margin of body

EPITHELOID = has desmosomes (junctions) but not a 'true' epithelium because <u>no basal lamina</u>

NOTE = number of desmosomes and therefore permeability differ between clade A and clade B (A>B)

FEEDING

- Feed with ventral surface producing digestive enzymes
- Extracellular digestion → ventral cells engulf already dissolved or broken down food via pinocytosis
- Can <u>convert ventral surface into a sac</u> to improve efficiency of digestion

REPRODUCTION

- Asexual reproduction binary fission
- Sexual reproduction
 - All evidence based on lab cultures (limited)
 - o Evidence of allele shuffling
 - At high animal density and low food:
 - Oocytes derived from lower epidermis when parent starts to degenerate
 - 2. Fertilisation follows
 - Membrane forms around egg and cleavage begins
 - 4. Early embryos released with death of parent
 - Haven't been able to determine whether gastrulation formation occur → therefore we don't know if lower epithelioid is derived from endodermal cells

FEEDING MODE OF LAST COMMON PLACAZOAN ANCESTOR?

Microphagous = <u>intracellular</u> digestion of <u>small particles</u> through <u>phagocytosis</u>

Macrophagous = <u>extracellular</u> digestion of <u>large particles</u> followed by <u>pinocytosis</u>

SCENARIO 1

Last common ancestor = microphagous (lower epithelioid not derived from endoderm following gastrulation; Eumetazoa and Placozoa branched off from this)

SCENARIO 2 (most likely)

<u>LCA = macrophagous</u> via central sole; <u>no gut</u> (gut was later evolved in Eumetazoans) \rightarrow evidence of this scenario in feeding traces on microbial mats (*Dickinsonia spp.* Suggests transition species from sponge to Placozoa)

SCENARIO 3

LCA = macrophagous via gut (gut was lost in modern Placozoa but kept by Eumetazoa)

- Asteroid metamorphosis hydrocoel becomes the water vascular system in adult; change to pentaradial symmetry after settlement
- EVIDENCE OF BILATERIA: Ancestor echinoderm was found with bilateral symmetry; speculate that some became attached to the sea floor, becoming more sessile radial symmetry is an advantage for sessile feeders to pentaradial symmetry evolved
 - Plematozoa mouth faces upward
 - Eleutherozoa mouth faces downward

KEY CHARACTERISTICS OF ECHINODERMS

- Adults pentaradial symmetry
- No distinct brain
- Spiny endoskeleton plates network of calcareous ossicles connected together by <u>catch</u>
 <u>collagen</u> goes from solid (locked ossicles) to liquid allowing sea star arms up and down (can
 hold posture for long time with little energy)
- Water vascular system develops as part of the coelom
- All marine no distinct osmoregulatory organ; not capable of living in freshwater
- Dermal branchiae papule; skin gills for respiration and N waste excretion
- Pedicellarie jaw-like projections on outside of body surface
- 3 compartments in adult coelom
 - True coelom = fluid filled, contains amebocytes, ciliated lining for circulation, bathes oragns, dermal branchiae projected from here
 - Hydrocoel locomotion
 - Haemocoel (perihemal channels) not well developed in sea stars, enclosed within part of the true coelom, up nutrient transferred from digestive organs to gonads and podia
- Pedicellaria spines arise to a greater or lesser extent from the dermal ossicles
 - Muscle controlled
 - o Pincers, pliers clean skin from parasite
 - Food collection

CLASS ASTEROIDEA - sea stars/star fish

- Inconspicuous anus (upper side is aboral)
- Conspicuous madreporite external opening to water
- Typically, 5 arms but may have more
- Regeneration of individual arms & clones
 - o Difficult to kill
 - Injecting CaCl into coelom is used to control crown of thorns starfish
- Oral side sensory tentacles on end of each arm
 - o Ocellus
 - o Ambulacral grooves lines with spines
 - o Ines with tube feet or podia locomotion, feeding & resp
- Spines = project from ossicles lying within connective catch collagen
- Dermal branchiae = papulae; delicate extensions of the coelom into seawater for respiration and excretion (respiration via diffusion into coelom; excretion by diffusion out via these papulae)
- Coelomocytes = transport wastes to tube feet
- Pyloric caecum = an extension of the digestive system

Central disc

- Water vascular system
 - Part of coelom that develop from hydrocoel
 - Ring canal, radial canals, lateral canals, ampullae and tube feet
 - Hydraulic system for extending, retracting and generally controlled tube feet (coordinated by the radial nerves)
 - Madreporite = hydraulic fluid pressure/volume regulator
 - Ampullae = localised (coelomic) fluid reservoirs; muscular contraction sends fluid into feet; longitudinal muscle in feet contract to shorten them (forces fluid back into ampullae)
 - → radial nerve coordinates foot movement
- Digestive and haemal systems
 - Large cardiac stomach is eversible
 - Digestion mainly extracellular within stomach cavity

- Most body fluid circulation is likely to occur though the various parts of the ciliated coelom
- Haemal system enclosed in a third coelomic compartment function unclear absorbed nutrients appear here after feeding and are transported to gonads and podia

Types of echinoderm larvae – class specific

CLASS OPIUROIDEA - brittle stars and sea baskets

- Comparing to asteroids
 - Arms sharply distinguished from central disc
 - Lack pedicellariae and papulae
 - Ambulacral grooves closed covered by ossicles
 - Bursae connect to outside via bursal (genital) slits at the bases to arms
 - Water circulates across bursae for respiratory exchange
 - Gonads associated with bursae release gametes into the bursae and out through bursal slits
 - Some have light detectors on ossicles
 - Simple saccular stomach no intestine or anus; visceral organs confined to disc
 - o Madeporite on oral end not aboral
 - Tube feet lack suckers used for feeding more than locomotion; move food to mouth
 - Tube feet lack ampullae extend by muscles alone
 - Locomotion by muscle movement not tube feet
 - 5 moveable plates act as jaws
- Brittle stars = feed on seafloor, grazing, detritus feeding, predators, scavengers
- Basket stars = filter feeders

CLASS ECHINOIDEA – sea urchins

- Similar to asteroids
 - o Retain pentaradial symmetry in regular echinoids 5 ambulacral grooves
 - Spines stiff and moveable on ball and socket joints
 - Pedicellaria some with venome gland
 - Oral surface bearing the tube feet has extended to the aboral side, so the abulacral grooves converge on periproct
 - o Dermal ossicles expanded into closely fitted plates forming an endoskeletal test (shell)
 - o Ambulacral groove marked by rows of holes in the test & are closed
 - o Podia connect to ampulla through these pore two pores per ampulla unit
 - Move tube feet with help of spines

Feeding

- Grazers
- o Inside test is a coiled digestive system; longer than that in asteroids
- Ciliated siphon allows water to bypass the stomach maintaining concentration of food passing into intestine
- 5 teeth attached to a complex chewing mechanism (ARISTOTLE'S LANTERN) unique to regular urchin and sea dollars
- Irregular sea urchins: sand dollars and heart urchins
 - Secondarily bilaterally symmetrical
 - Change in shape allows more efficient access to water and oxygen within sediments and burrows
 - o Live buried in sediment degree of faltering correlated with grain size of sediment
 - Move by movement of spines rather than tube feet

CLASS HOLOTHUROIDEA – sea cucumbers

- Retain elements of pentaradial body plant 5 ambulacral modified grooces
- Secondarily bilateral with extended oral-aboral axid
- Elongated body
- Dermal ossicles much reduces soft bodies

FISH LOCOMOTION

Properties of water

- Universal solvent mix of gases, solutes, ions etc
- Thermally stable and constant relative to air
- Density 800x density of air
- High viscosity 15x air
- Incompressible
- Low oxygen concentration 1/20 of air, <10ml oxygen per litre
- Rate of diffusion for oxygen 300,000x slower than air
- CO₂ highly soluble in water
- NH₃ (NH₄⁺) highly soluble in water

Advantages

- 1. Increased buoyancy with greater density
- 2. Generate force against medium (an incompressible fluid)
- 3. Reduce effect of gravity

Disadvantages

- 1. Increased drag with increase in viscosity
- 2. Greater effort/energy required to swim through water

Body form

Reduce drag; increase swimming speed

- Streamlining
- Scales and mucus
- Fusiform body shape

Body torpedo-shaped Caudal peduncle narrow Caudal fin sickle-shaped, stiff

The machinery

- Axial musculature skeletal muscle
- Segment muscle blocks myotomes
 W shape
 Spiral pattern of muscle fibres
- Sheets of collagenous tissue myosepta (which attach to vertebral column)

(Muscle fibres do not attach directly onto vertebral column)

