Contents

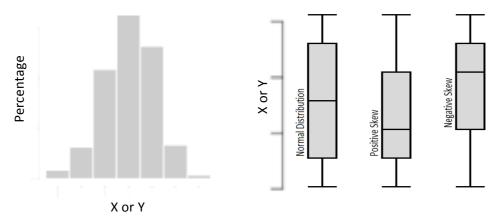
- 2 Simple Linear Regression
- 5 Linear regression, categorical exposure
- 6 Log Regression, binary outcome
- 8 Log Regression, categorical exposure
- 9 Log Regression, case-controls studies
- 10 Log Regression, continuous exposure
- 10 **Confounding**
- 11 Multivariable Logistic Regression
- 13 Multivariable Linear Regression
- 18 Effect Modification/Interaction
- 2 Session One
- 5 Session Two
- 9 Session Three
- 13 Session Four
- 14 Session Five
- 18 Session Six

Session One



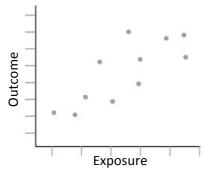
Looking at the individual distributions of X and Y

We use either histograms or box plots



Looking at the association between X and Y

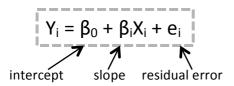
We use a scatter plot for continuous variables



We can comment on:

- **Direction** of the association (+ or –)
- If the association looks linear or not
- The **spread** of the data in certain areas

Simple Linear Regression reg



- Continuous outcome
- Numerical exposure
- Only one exposure variable
- Estimates best-fitting straight line of scatter plot

Coefficient Interpretation:

 β_0 = Estimated mean outcome when exposure is zero = _cons β_1 = Estimated mean change in outcome for 1 unit increase in exposure

95% CI interpretation for β_1 :

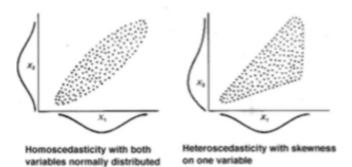
"We are 95% confident that the population mean increase in outcome for a 1 unit increase in exposure could be as low as ## or as high as ##."

Null hypothesis of *P*-value for β_1 :

"There is no association between exposure and outcome; $\beta_1 = 0$ "

Assumptions of linear regression

- 1. Association between exposure and outcome is linear
- 2. Residual variation is normally distributed
- 3. Independence of observations
- 4. Homoscedasticity (spread of data points is consistent and does not fan out)



Methods of least squares

Used to derive the best-fitting line of a simple linear regression model.

It finds values of β_0 and β_1 that minimize the sum of the squared vertical distances from observed points to the fitted line.

We square these residuals so that the negatives and positives (observed points above and below the fitted line) do not nullify each other.

Interchanging exposure and outcome

$$X \rightarrow Y \quad \neq \quad X \rightarrow Y$$

The slope parameter for Y on X is:

 $m_1 \times r^2$ or $\frac{1}{\beta 1} \times r^2$... where **r** is the correlation coefficient

Correlation Coefficient (r)

The correlation coefficient can take values between $-1 \le r \le +1$.

It tells you the **direction** (+ or –) and **strength** (closer to zero=weak; away from zero=strong) of association.

It has the same sign (+ or –) as the regression coefficient β_1 .

$$\hat{\beta}_1 = r \frac{S_y}{S_x}$$
 ...where s_x and s_y are the sample standard deviations of x and y.
If s_x = s_y, then β_1 = r

How do we get the estimated slope parameter if we have β_1 (0.0436) and r (0.7591)?

estimated slope parameter = $\frac{1}{\beta 1} \times r^2$ = $\frac{1}{0.0436} \times (0.7591)^2 = 13.22$

Centering a variable around a value

We do this to obtain a sensible, more logical interpretation of the intercept (β_0).

X_{centred} = X_{original} – new centre

When we center a variable around a value and fit a regression...

- 1. the slope parameter will not change (β_1)
- 2. the value and interpretation of the intercept (β_0) changes " β_0 is the estimated mean outcome value when the exposure = (new center)"

Centering a variable around it's mean

The mean of the new centered variable = 0

 $X_{centred} = X_{original} - mean of X$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Eg. SBP = $125 - 4.7 \times Birthweight$

- Q. The sample mean birthweight is 2.7kg. If we subtract the sample mean from each participant's birthweight to create "Birthweight_{adjusted}" and then fit a regression line, what would the values of *a* and *b* be below? SBP = a + b x Birthweight_{adjusted}
- A. $Y = \beta_0 + \beta_1 \times Birthweight_{adjusted}$ When we centre variables around the mean, which is what this question has done, β_1 stays the same but β_0 changes. Now, β_0 is the estimated mean SBP when the exposure = 2.7kg. The original model we were given was: SBP = 125 - 4.7 x Birthweight ...so: Predicted SBP = 125 - 4.7 x 2.7 Predicted SBP = 112.31 mmHg = β_0 ...so: $\beta_0 = a = 112.31$ mmHg $\beta_1 = b = -4.7$

Standardized variables

When we standardize the exposure *and* outcome variables and fit a linear regression, the **slope parameter** (β_1) will be the **correlation coefficient** of the two variables.

$$z = \frac{x - \mu}{\sigma}$$

The correlation coefficient of the standardized variables is still the same coefficient of the original variables.