2 Simple Linear Regression
5 Linear regression, categorical exposure
6 Log Regression, binary outcome
8 Log Regression, categorical exposure
9 Log Regression, case-controls studies

10 Log Regression, continuous exposure

10 Confounding

11 Multivariable Logistic Regression

13 Multivariable Linear Regression

18 Effect Modification/Interaction

2 Session One

5 Session Two

9 Session Three

13 Session Four

14 Session Five

18 Session Six

Session One

Looking at the individual distributions of X and Y

We use either histograms or box plots

X or Y

Looking at the association between X and Y

We use a scatter plot for continuous variables

Simple Linear Regression reg

Coefficient Interpretation:

$\boldsymbol{\beta}_{0}=$ Estimated mean outcome when exposure is zero = _cons
$\boldsymbol{\beta}_{1}=$ Estimated mean change in outcome for 1 unit increase in exposure

95\% CI interpretation for β_{1} :

"We are 95% confident that the population mean increase in outcome for a 1 unit increase in exposure could be as low as \#\# or as high as \#\#."

Null hypothesis of P-value for β_{1} :
"There is no association between exposure and outcome; $\beta_{1}=0$ "

Assumptions of linear regression

1. Association between exposure and outcome is linear
2. Residual variation is normally distributed
3. Independence of observations
4. Homoscedasticity (spread of data points is consistent and does not fan out)

Homoscedasticity with both variables normally distributed

Heteroscedasticity with skewness
on one variable

Methods of least squares

Used to derive the best-fitting line of a simple linear regression model.
It finds values of β_{0} and β_{1} that minimize the sum of the squared vertical distances from observed points to the fitted line.
We square these residuals so that the negatives and positives (observed points above and below the fitted line) do not nullify each other.

Interchanging exposure and outcome

$X \rightarrow Y \quad \neq \quad X \rightarrow Y$
The slope parameter for Y on X is:
$m_{1} \times r^{2} \quad$ or $\quad \frac{1}{\beta 1} \times r^{2} \quad \ldots$ where r is the correlation coefficient

Correlation Coefficient (r)

The correlation coefficient can take values between $-1 \leq r \leq+1$. It tells you the direction (+ or -) and strength (closer to zero=weak; away from zero=strong) of association.
It has the same sign (+ or -) as the regression coefficient β_{1}.

$$
\hat{\boldsymbol{\beta}}_{1}=r \frac{\boldsymbol{S}_{y}}{\boldsymbol{S}_{x}} \quad \text { If } \mathrm{s}_{\mathrm{x}}=\mathrm{s}_{y} \text {, then } \beta_{1}=r \text { where } \mathrm{s}_{\mathrm{x}} \text { and } \mathrm{s}_{\mathrm{y}} \text { are the sample standard deviations of } \mathrm{x} \text { and } \mathrm{y} \text {. }
$$

How do we get the estimated slope parameter if we have $\boldsymbol{\beta}_{1}(0.0436)$ and $\mathbf{r}(0.7591)$?

$$
\begin{aligned}
\text { estimated slope parameter } & =\frac{1}{\beta 1} \times r^{2} \\
& =\frac{1}{0.0436} \times(0.7591)^{2}=13.22
\end{aligned}
$$

Centering a variable around a value

We do this to obtain a sensible, more logical interpretation of the intercept (β_{0}).

$X_{\text {centred }}=X_{\text {original }}-$ new centre

When we center a variable around a value and fit a regression...

1. the slope parameter will not change ($\boldsymbol{\beta}_{1}$)
2. the value and interpretation of the intercept ($\boldsymbol{\beta}_{0}$) changes " B_{0} is the estimated mean outcome value when the exposure $=($ new center)"

Centering a variable around it's mean

The mean of the new centered variable $=0$
$X_{\text {centred }}=X_{\text {original }}-$ mean of X
$\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$
Eg. \quad SBP $=125-4.7 \times$ Birthweight
Q. The sample mean birthweight is 2.7 kg . If we subtract the sample mean from each participant's birthweight to create "Birthweight ${ }_{\text {adjusted" }}$ and then fit a regression line, what would the values of a and b be below?
SBP $=a+b \times$ Birthweight $_{\text {adjusted }}$
A. $Y=\beta_{0}+\beta_{1} \times$ Birthweight $_{\text {adjusted }}$ When we centre variables around the mean, which is what this question has done, β_{1} stays the same but β_{0} changes. Now, β_{0} is the estimated mean SBP when the exposure $=2.7 \mathrm{~kg}$. The original model we were given was:
SBP = 125-4.7 \times Birthweight ...so:
Predicted SBP $=125-4.7 \times 2.7$
Predicted SBP $=112.31 \mathrm{mmHg}=\beta_{0} \quad$...so:
$\beta_{0}=a=112.31 \mathrm{mmHg}$
$\beta_{1}=b=-4.7$

Standardized variables

When we standardize the exposure and outcome variables and fit a linear regression, the slope parameter $\left(\beta_{1}\right)$ will be the correlation coefficient of the two variables.
$\mathrm{Z}=\frac{x-\mu}{\sigma}$

The correlation coefficient of the standardized variables is still the same coefficient of the original variables.

