L1C Life in the Aquatic Environment (TW)

Our Water Planet

- ullet 71% of Earth's surface is water \Rightarrow 300x more space for life than land and freshwater combined
- Deepest ~11,000m, average 3,800m
- Oceans formed ~4.4-3.5bya (lot of time for life to evolve since)
- More phyla in sea than on land and in freshwater (most are undescribed!)
- Almost all bodies of water contain a wide variety of communities governed by abiotic and biotic factors (e.g. light, salinity, nutrients and oxygen)

Life in the Sea

- Appears harsh to us
- BUT life evolved in the seawater (we think due to):
 - Most water on Earth is in the oceans
 - Many phyla of animals live in saltwater, fewer live in freshwater

Favourable Attributes of Seawater

- Seawater is denser than air marine species buoyed up by water = don't need large skeletons for support
- Energy saving Floating and swimming requires little energy
- <u>Temperatures stability</u> doesn't vary much in the ocean

Unfavourable Attributes of Seawater

- Light penetration limits Plant growth is limited to upper waters ⇒ limits primary production
- <u>Nutrient limitations</u> Plant growth is limited by essential nutrients:
 - Decaying matter sinks to seafloor (not in the same place as light)
 - · Needs water movement (upwelling) to return it
- Hydrostatic pressure increases with depth → creates vertical zonation
- <u>Geographic barriers</u> set by physical (e.g. temp) and chemical (e.g. salinity) difference in seawater (creates zonation)

The Marine Environment Zones

Main Abiotic Factors Governing Marine Life

- Light
- Temperature
- Salinity

- Water movement
- Nutrients
- Depth (hydrostatic pressure)
- Chemical composition (CO₃²⁻, pH, O₂, SO₄²⁻, ...)

Light: Solar Radiation

- Light \rightarrow plants \rightarrow conversion to organic matter
- Light → water → heat → temperature regimes
- Light penetration controls max depth distribution of plants and some animals (e.g. deepest seaweed = 268m)

Ecological Zones defined by Light Penetration

- Euphotic zone: sufficient light to support plants
- Dis-photic zone: fish and some invertebrates can see, not enough light for positive net photosynthesis
- Aphotic zone: sunlight not detected by any biological system. No plant life ⇒ spatially removed from initial link in the food chain.

#Depth of these zones varies depending on light reaching the surface, clarity of the water and the angle of the sun.

Algal Distribution: with light and depth

- Some algae have adapted photosynthetic responses:
 - Algal form and growth rates
 - Pigment concentration
- Therefore, as a 'rule of thumb' there are more green seaweeds in shallow waters, redder in deep waters and brown extending with depth.
- Non-photosynthetic responses:
 - Photo-tropism (taxis)
 - Reproduction cues (e.g. day length, blue light)

Increasing depth

Primary contributor(s) to light attenuation in different aquatic environments

inland waters	estuaries	coastal waters	
gilvin/particulates or combination	inorganic particulates	phytoplankton & inorganic SPM	open ocean
			& water

Temperature affecting marine biology

Controls rates at which chemical reactions and biological processes take place

Temperature and salinity combine to determine density of water

• Temperature partly determines [dissolved gasses]

 Isotherms (lines of equal temperature) set distribution boundaries for species and communities

Salinity (ppt, psu)

- Maintaining osmotic balance is challenging and physiologically costly
- 34-37ish, warmer waters = more evaporation = saltier water.
- Can vary seasonally
- Open ocean = $32-38^{\circ}/_{00}$ (average is 35)
- Shallow coastal areas = $27-30^{\circ}/_{00}$
- Estuaries = $0-40^{\circ}/_{00}$
- Semi closed seas:
 - <25 ⁰/₀₀ (brackish, eg. Baltic sea)
 - > 40 ⁰/₀₀ (hypersaline, eg. Red Sea, Shark Bay)

D E

P T H

Water Movement: Currents

- Affected by energy from the sun, Earth's rotation and tides
- Energy from the Sun: Radiation balance is positive at low latitudes and negative at high latitudes ⇒ heat redistributed to higher latitudes by wind and currents

2. Rotation of Earth:

- Friction is weak between the ocean and earth
- Coriolis Force is strong!
 - 0 at equator, highest at poles
 - Right angles to direction of motion = deflects right in NH, left in SH
- **3. Tides** → gravitational pull of the moon

California Current Western boundary Circum-Antarct ic Currents Currents Currents Currents Current

Water Movement: Waves

• Orbital wave motion, usually driven by wind

Surge Zone (e.g. shallow reef environment)

- Physical challenge for species due to mechanical drag of waves
- Organism adaptions including leathery and flexibility (e.g. seaweeds)

Environment-Organism Relationships

- Shape, size, colour, behaviour etc. of every organism depends on the environment in which it lives and its place in the ecosystem
- Essential strategies for all organisms include obtaining/making food, avoiding being eaten and reproduction
- Meeting those requirements dictates where organisms live (niche) and how they obtain/make food (nutrition)