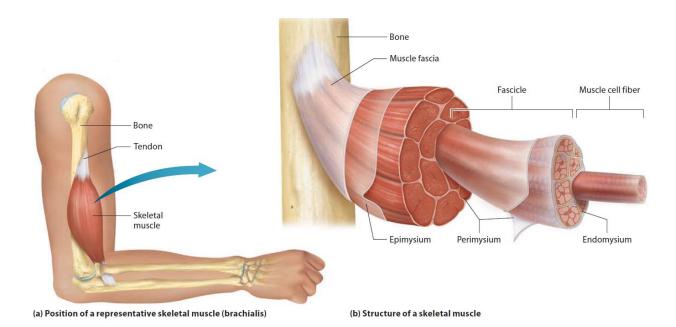
The Muscular System

Topics covered


- Function of muscles
- Gross anatomy of muscles
- Muscle architecture
- Classifying muscles by shape
- Classifying muscles by function
- Muscle attachments
- Muscle actions
- Muscle nomenclature
- Muscle groups and functions
 - Axial
 - 1. Head/neck
 - 2. Vertebral column
 - 3. Lower trunk
 - 4. Pelvis
 - Appendicular
 - 1. Shoulder
 - 2. Muscles that position the scapula
 - 3. Upper limb
 - 4. Lower limb
- Physiology of muscles
- Skeletal muscle structure
- Sarcomeres
- Muscle contractions
- Muscle relaxation
- Muscle tone
- Muscle stimulation response
- Resting muscle length
- Isotonic and isometric contractions
- Sources of ATP
- Muscle fibre types
- Muscle fatigue
- Oxygen 'debt'
- Delayed onset muscle soreness
- Aging muscles

Function of muscles

- Movement:
 - Skeletal muscle contraction and relaxation causes bones to move at their joints.
 - Contraction of the diaphragm muscle produces volume and pressure changes to the thoracic cavity → assists in breathing
 - Stapedius muscle of the inner ear dampens excessive vibrations to prevent being overwhelmed by the sound of our own voice when we speak.
- Protection
- Support

Gross anatomy of muscles

- Each individual muscle cell/fibre = surrounded by endomysium (thin sheet of CT)
- Each bundle of muscle fibres = fascicle = surrounded by perimysium
- Each muscle unit = bundle of fascicles = surrounded by epimysium (fibrous CT)
- The epimysium extends to form tendons
- Muscles can attach to bones:
 - Via tendons
 - Via aponeurosis- (pearly white fibrous sheets i.e. basically a tendon but with a broader insert)
 e.g. the rectus abdominus inserts into a big fan of CT that has anchoring points all over the
 abdominal cavity for muscles to pull in different directions where the broad insertions allow a
 wider ability to contract.
 - Directly- Some muscles directly attach to the bone e.g. temporalis whereby the periosteum of the bone directly fuses with the epimysium

Muscle architecture

- Every muscle fibre runs parallel to each other thus each fascicle can only pull in one direction
- The fascicular arrangement is associated with:
 - o The amount of power a muscle can produce
 - The ROM a muscle can produce

e.g. Longer muscles = large ROM, less strength + vice versa

Classifying muscles by shape

- The pattern in which fascicles are arranged affects the appearance and function of skeletal muscles:
- 4 main arrangements:

1. Parallel:

- Evenly spaced fascicles attaching to a tendon that is approximately the same width as the muscle
- ➤ Strap muscles→Does not significantly change in thickness all the way along
 Fusiform→ Anatomical 'belly' at the centre i.e. thick and dense at the centre as it is usually
 where multiple branches of muscles come together
- Most parallel muscles have a large ROM and less strength allowing for movements such as flexion and extension *e.g.* biceps brachii, brachialis.
- Strap muscles E.g. Sartorius of thigh

2. Pennate

- Fascicles that attach to the tendon at an angle i.e. runs obliquely to the insertion
- ➤ Unipennate → fascicles arranged in 1 oblique direction on the same side of the tendon e.g. extensor digitorum longus
 - Bipennate \rightarrow Tendon in the middle and fibres insert obliquely on either side *e.g. rectus* femoris
 - Multipennate → Multiple tendons and multiple fibres e.g. deltoid

3. Convergent

- > Broad sheet of fibres all fusing to attach to one focal point i.e. a single tendon
- Generally strong however takes up lots of space and attachment points
- Most are triangular shaped and versatile i.e. many convergent muscles have fascicles isolated according to position e.g. upper, medial, lower quadrants = same muscle however each can be contracted in different ways and intensities to produce slightly different movements
- E.g. pectoralis major

4. Circular

- Form sphincter like structures that are generally enter/exit points of the body
- ➤ Don't generally attach to bones but rather, attach to themselves
- When it contracts, the lumen diameter decreases to limit the amount of substance that needs to leave/enter through it



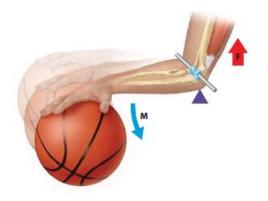
Figure 9.2 Fascicle pattern and muscle shape.

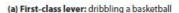
Classifying muscles by function

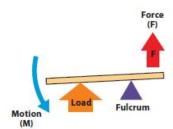
- Not all muscles act as part of a lever system
- All muscles act upon some position/joint in the body allowing it to move therefore most muscles are based on a lever system
- Muscles apply FORCE to pull bones i.e. LEVERS to move body parts via joints i.e. FULCRUM
- The type of lever depends on where the force is
- Different levers provide different contractions in terms of:
 - Direction of applied force
 - Distance of movement caused by the force
 - Speed of movement caused by the force
 - Effective strength of the applied force
- When the fulcrum is located further away from the force → lever works at a mechanical advantage
- Mechanical advantage: When a small force moves a large load over a short distance (short + strong)

Types of levers

1. First class levers


- See-saw looking i.e. fulcrum is between the point of applied force and load to be moved
- Rare e.g. flexion/extension of neck at atlanto-occipital joint → load = front of head, fulcrum = joint, force = muscles at the back of the neck
- Not very energy efficient
- Produces a mechanical advantage or disadvantage depending on the strength of the muscle and the location of the fulcrum


2. Second class levers


- Wheel-barrow type
- Fulcrum is located further from the applied force thus the force picks up the entire load to move it against the fulcrum
- The load moves in the same direction as the applied force (rare event)
- Small force = moves a large load but SLOW e.g. standing up on toes i.e. PF
- Works at a mechanical advantage
- "power" levers (gastrocnemius, soleus)

3. Third class levers

- Most common
- Shovel type
- Force is much closer to the fulcrum
- Mechanical disadvantage i.e. moves very quickly but not the strongest
- E.g. elbow

- · Fulcrum is located between applied force and load to be moved.
- Force applied and load moved are in opposite directions.
- Lever works at a mechanical advantage or disadvantage, depending on location of fulcrum.