BUFFERS

Can bind or release H⁺ to minimise changes in the concentration of free H⁺.

If H^+ are added to a solution, the buffer will bind most of them preventing a sudden drop in pH. If H^+ are removed from a solution, the buffer will release H^+ thus preventing a sudden rise in pH.

BLOOD BUFFERING

The most important buffers in blood are bicarbonate and Hb.

Hb buffering

In the tissues CO_2 is added to the blood, lowering the pH. Once Hb has release O_2 , it can bind H^+ .

Plasma proteins and phosphates make minor contributions.

NB: Level of contribution (1) HCO₃⁻ (2) Hb (3) Phosphates (4) Proteins.

- Acidosis → fatigue in exercise
- $HCO_3^- \rightarrow prevents \ acidosis \rightarrow prevents \ fatigue \ in \ exercise$

$H^{\dagger} + HCO_3 \rightarrow H_2O + CO_2$ $Hb - O_2$ $CO_2 \rightarrow Hb$ $CO_2 + H_2O \rightarrow HCO_3 + H^{\dagger}$ $CO_3 \rightarrow H^{\dagger}$ $CO_4 \rightarrow H^{\dagger}$ CO_4

INTRACELLULAR BUFFERING

The most important intracellular buffers are proteins and phosphates.

- Creatine-P + ADP → creatine (acts as a buffer) + ATP

URINARY BUFFERS

 H^+ is secreted in proximal and distal tubules. If urinary pH falls below 4.5, H^+ excretion will cease to prevent damage.

The main urinary buffers are phosphates and ammonia.

- Collect free H⁺ to protect the urinary system by preventing urine from becoming too acidic, which can damage the renal system.

Proton excretion in the kidneys:

- Is achieved by active transport
- Is linked to Na⁺ reabsorption
- Is stimulated by aldosterone

H⁺ and K⁺ compete for Na⁺ exchange. Increased H⁺ pumping and decreased K⁺ pumping occur in acidosis. Therefore acidosis may result in hyperkalaemia.

Normally, all HCO_3^- which is filtered by the glomerulus is reabsorbed in the kidneys. When $[HCO_3^-]$ is high (>28 mmol/l), the renal threshold is exceeded and bicarbonate will appear in the urine.

In summary:

If we have excess H⁺, swap Na⁺ for H⁺ <u>BUT</u> retain K⁺. ACIDOSIS \rightarrow HYPERKALAEMIA (excess K⁺) If we have excess K⁺, swap Na⁺ for K⁺ <u>BUT</u> retain H⁺. HYPERKALAEMIA \rightarrow ACIDOSIS (excess H₊)

NB: pH of urine often reflects pH of the blood.

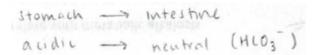
ACID BASE ABNORMALITIES

Classified by aetiology and type.

- 1. Aetiology underlying cause (which system is broken)
 - Metabolic primary abnormality is in bicarbonate levels or non-volatile acid production or excretion
 - Respiratory primary abnormality is in CO₂ control determines H⁺/pH of blood
 - Mixed only seem in severely ill patients

2. Type

- Acidosis
- Alkalosis


METABOLIC ABNORMALITIES

Due to primary changes in:

- [HCO₃-]
- [Non-volatile acid]

Bicarbonate

- The primary loss of HCO₃- causes metabolic acidosis e.g. diarrhoea
 - o HCO_3 deficiency \rightarrow cannot neutralise stomach acid \rightarrow acidosis
- The direct gain of HCO₃⁻ causes metabolic alkalosis e.g. via ingestion

