Econ3236 International Finance

Lecture 1: Introduction + IF Markets: An Overview

Lecture 2: The Balance of Payments and IF

Lecture 3: The FX and Eurocurrency Markets

Lecture 4: International Money and Capital Markets

Lecture 5: The Exchange Rate: Jargon

Lecture 6: The Exchange Rate: Real, Effective

Lecture 7: Models of Exchange Rates: Supply and Demand

Lecture 8: The Supply and Demand Model: Applications

Lecture 9: Supply-Demand Model Application: Exchange Rate Systems

Lecture 10: Purchasing-Power Parity Models

Lecture 11: Monetary Model of the Exchange Rate

Lecture 12: Covered Interest Parity (CIP)

Lecture 13: Uncovered Interest Parity (UIP)

Lecture 14: CIP, UIP Compared and evaluated

Lecture 15: Expectations and Speculation in the FX Market

Lecture 16: Exchange-rate Forecasting

Lecture 17: FX Risk, Forwards and Futures

Lecture 18: Swaps in International Finance

Lecture 19: Currency Options

Lecture 20: FX Risk, Exposure, and Management

Lecture 21: Managing Transactions Exposure

Lecture 22: Managing Transactions Exposure Continued

Lecture 7: Models of Exchange Rates: Supply and Demand

Reference: Moosa 3.3

- 1. Introduction: the purpose of models and an overview of exchange rate models
 - a. Modelling: abstract version of reality simplification world is too complicated
 - i. What is a good model for some purposes is not for other purposes
 - ii. Assumptions: State what the abstraction is
 - iii. Three types of modelling:
 - 1. Verbal
 - 2. Diagrammatic
 - 3. Algebraic
- 2. The supply-demand framework
 - a. Notation and assumptions
 - i. Assumptions:
 - 1. One foreign country and therefore one exchange rate
 - 2. Exchange rate is quoted in direct form: dc/fc S(d/f)
 - 3. Q_f quantity of foreign exchange
 - 4. D_f demand for foreign exchange
 - 5. S_f supply of foreign exchange
 - b. Demand (df)
 - i. First thing to note is that it's a derived demand we don't demand foreign exchange for its own sake you don't demand to consume it, you demand to use it for something else, for example:
 - 1. Buying goods and services priced in foreign currency (imports)
 - 2. Investing in foreign assets UK bank deposits buy foreign currency then buy assets
 - 3. Repatriate income to foreign income
 - 4. Make donations or transfers overseas
 - ii. Relationship between df and exchange rate goes through derived demand this basically means that if Australia buys more goods from overseas then D_f goes up
 - iii. Df(S(d/f))
 - What happens to the demand for foreign exchange following an increase in the spot fate? f.e. S(d/f) → d.c. price of f.c. → d.c. of the import (given f.c. price of the import) → Demand for Imports → Df
 - 2. Summary: an increase in S(d/f) leads to a decrease in Df

c. Supply

i. Also a derived supply i.e. receive foreign exchange for something they fell

ii. S(d/f) → d.c. price of exports (given foreign currency price of exports)
→ Supply of exports → Sf

iii. Summary: an increase in S(d/f) leads to a decrease in Sf

d. Equilibrium

- i. Df = Sf
- ii. At equilibrium Qfo = So, Df = Sf

Lecture 8: The Supply and Demand Model: Applications

- 1. Introduction: comparative statics
 - a. Use the model to trace how a change in an exogenous factor (determined outside but influences the model) affects a model

Comparative statics is a comparison of endogenous variables to the exogenous variables. (only change one exogenous variable to trace the change and effect on endogenous variable)

2. The supply-demand model and international trade

- a. Do this to understand how exogenous variable fit into the model (i.e. how they change the curves)
- b. Df derived from imports (people want Df because they want to use it to buy imports)
- c. Sf derived from exports
 - i. Sf = Foreign currency value of exports= P*x * Qx

P*x = Price of foreign exports → Price is determined by a Demand-Supply model of exports (exchange rate influences this)

- 3. The supply-demand model: an application to a change in relative growth rates
 - a. Hard to do this as it is a dynamic application being applied to a static model
 - b. Simplify to two steps
 - i. assume foreign growth rate is constant and there is an increase in domestic growth rate
 - ii. 2nd simplification → going to talk about an increase in domestic income rather than growth rate → easier to apply to the model
 - iii. Question becomes, what is the effect on the S(d/f) of an increase in domestic income? ceteris paribus.

1st Step: which curve shifts?

- Demand for imports → equilibrium quantity of imports is affected → Df

2nd Step: how does it shift?

- Increase in income leads to an increase in the demand for imports → increase in the quantity of imports → increase in the demand for foreign exchange
- i.e. rightward shift

3rd Step: What is the effect on the equilibrium S(d/f)?

- For no shift in the supply of imports

So, Increase in S: $SO \rightarrow S1$ i.e. depreciation (takes more domestic currency to purchase foreign currency)

Intuitive story is;

As domestic incomes increase, domestic consumers feel better off, so they want to increase their consumption of goods including consumption of imports. Marginal propensity to import of 30% (positive). More imports need more foreign exchange, that forces the price of foreign exchange up and thus leads to a depreciation of the domestic currency.

4. The supply-demand model: an application to a change in the terms of trade

Reference: Moosa 3.3, 4.2