Acid base reactions:

- neutralisation reactions; but not always.
- reactant/product pairs differ by H+
- Common acid base reaction types:
- acid + base = water + salt;
 - \circ H2SO4(aq) + KOH (aq) = H2O (I) + K+LSO4 (aq)
- acid + carbonate = water + carbon dioxide + salt
 - o think of 2 step process (looks like single step)
 - \circ 2HCl(aq) + K2CO3 (aq) = H2CO3(aq) (H2O(I) + CO2(g)) + 2KCl(aq)

Oxidation-reduction (redox) reactions:

- historical names:
 - o oxidation: combination of an element with oxygen
 - o reduction: reduce oxygen content
 - modern definition:
 - oxidation: Oxidation Is Loss of electrons
 - reduction: Reduction Is Gain of electrons (OIL RIG)
- reducing agent: a reactant that causes a reduction in another reactant by giving up electron to it
 - undergoes oxidisation
 - caused reduction
 - loses one or more electrons
 - becomes more positive (less negative)
 - (may gain oxygen atoms)
 - the charge of the reducing agent increases during the reaction
- oxidising agent: a reactant that causes an oxidation by taking electrons from another reactant
 - undergoes reduction
 - gains one or more electrons
 - causes oxidation
 - becomes more negative (less positive)
 - (may lose oxygen atoms)
 - the charge of the oxidising agent decreases during the reaction
 - o *increased charge = oxidised*
 - o *decreased/reduced charge = reduction*
- recognising redox reactions:
 - oxidation number:
 - compare the oxidation number of an atom before and after a reaction
 - method of counting electrons: indicated whether the atom is neutral, electron-rich or electron poor
 - note; oxidation numbers do not necessarily imply ionic charges
 - oxidation number rules:
 - an atom in its elemental state has an oxidation number of zero (0)
 - a monatomic ion has an oxidation number equal to its charge
 - oxidation number +1 -> Na+

- oxidation number +2 —> Ca2+
- oxidation number -1 —> Cl-
- oxidation number -2 —> O2-
- in a molecular compound, an atom usually has the same oxidation number it could have if it were a monatomic ion
- the sum of the oxidation numbers in a neutral compound is zero (0)

Net Ionic Equations:

- molecular equations:
 - o molecular formulas
 - H2SO4 (aq) + KOH (aq) = H2O (I) + KHSO4 (aq)
 - o ionic equation
 - ionic species shows an ions
 - spectator ions uncharged in reaction
 - net ionic equations remove spectator ions