Overview of the Immune System

Physical Barriers: include epithelial, secretions, mucus, urine, proteolytic enzymes, low stomach pH and normal gut flora.

	Central Sites	Peripheral Sites
•	Primary Lymphoid	Skin
	Bone Marrow	Liver
	Thymus	■ Gut
•	Secondary Lymphoid	Heart
	Spleen	Brain
	Lymph Nodes	CNS
	Mucosal/cutaneous	Muscle
	associated	Lungs
	lymphoid tissue	

Immunity: defined as resistance to disease (specifically infectious disease)

Disease	Maximum number of cases (year)	Number of cases in 2014	Percent change
Diphtheria	206,939 (1921)	0	-100
Measles	894,134 (1941)	669	-99.93
Mumps	152,209 (1968)	737	-99.51
Pertussis	265,269 (1934)	10,631	-95.99
Polio (paralytic)	21,269 (1952)	0	-100
Rubella	57,686 (1969)	2	-99.99
Tetanus	1560 (1923)	8	-99.48
Hemophilus influenza type B	~20,000 (1984)	34	-99.83
Hepatitis B	26,611 (1985)	1,098	-95.87

	First discovered in the bursar of	
	Fabricius	
	Main function is to secrete	
В	antibodies!	
Lymphocytes	 Derived from common lymphoid 	
Lymphocytes	progenitors in BM	
	Form part of the humoral	
	response	
	Mature in the thymus	
	CD4+ Helper T Cells	
	 Surface expression of CD4 	
	molecules	
	 Release cytokines or 	
	mediates via membrane	
т	bound molecules	
	CD8 + Cytotoxic T lymphocytes	
Lymphocytes	 Characterized by surface 	
	expression of CD8 molecules	
	 Kill target cells in a highly 	
	specific way	
	 Get 'help' from CD4+ T cells 	
	 Key role in viral infections 	
	and anti-tumour immunity	

Autocrine: acting on the cell that produced the

cytokine

Paracrine: acting on neighboring cells

Endocrine: acting on distant cells, or systemically

Antigens: substances that induce immune

response (they are immunogenic)

Epitope: the part of an antigen molecule to

which an antibody attaches itself

Cytokines: can modulate inflammatory and immune reactions. Principal communicator!

	Immature Lymphocytes	Mature Lymphocytes
-	Do not yet have antigen-specific receptors	 Have functional antigen-specific receptors
•	Unable to respond to foreign antigens	Can respond to foreign antigens
•	Found in primary lymphoid tissues	 Found in secondary lymphoid tissues and in peripheral tissues

Principles of Innate Immunity

Characteristics of the Innate Immune System

- Early and fast
- Short-lived duration
- Repetitive response
- Interactive with cells of both innate and immune systems
- Non-reactive to host

Components of Innate Immunity

- 1. Epithelial barriers
- 2. Cells in circulation and tissues
 - a. Phagocytes (neutrophils and macrophages)
 - b. Exocytes (eosinophils, mast cells, basophils)
- 3. Molecules
 - a. Cytokines (TNF, IL-1)
 - **b.** Plasma proteins (complement, Creactive protein, mannose binding lectin)

Phagocytes: scavengers that ingest microbes **Exocytes:** release active mediates from granules

Pattern Recognition Receptors

- Expressed by epithelial, endothelial cell and Reside Immune Cells
- Recognise PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns)
- Binding of PAMPs and DAMPs to PRRs triggers a cascade of events
 - Release of soluable mediators (e.g. cytokines)
 - Recruitment of innate immune cells (neutrophils, monocytes)

Toll-like Receptors

- Different TLRs are specific for different components of microbes
- Some TLRs are present on the cell surface (where they recognise products of extracellular microbes)
- Some TLRS present in endosomes (where they recognise ingested/phagocytosed microbes)
- Result: activation of transcription factors that stimulate expression of genes encoding cytokines, enzymes etc

PRR / PAMPs Binding – The Cascade of Events:

- 1. Release of histamine and inflammatory cytokines (TNF, IL-1)
- 2. Vasodilation (redness and swelling)
- 3. Expression of adhesion molecules (to attract neutrophils and monocytes phagocytosis!)
- **4.** Attracted cells adhere to endothelial cells only at sites of inflammation

Mast Cells

- Suggested that mast cells may regulate or suppress immune response
- **Function**: Important antibacterial functions. Kills bacteria by entrapping them in extracellular structures called 'traps'
- Important in the recruitment of inflammatory cells to sites of infection of danger (cytokines, TNF, histamine)
- Location: alongside blood vessels. Probe the lumen of blood vessels picking up antibodies (mainly IgE)

Neutrophils:

- Also called polymorphonuclear leukocytes
- Short lived!
- Derivative: common myeloid progenitors in bone marrow
- Functions:
 - Infiltrate inflamed peripheral sites
 - Potent antibacterial functions
 - Perform phagocytosis
 - Secrete cytokines (to promote further inflammation and recruitment)

THE PROCESS OF CELL MIGRATION!

- 1. Tissue resident cells promote inflammation
- 2. TNF and IL-1 stimulate endothelial cells to rapidly express two adhesion molecules
 - E-selection and P-selectin
- 3. Circulating phagocytes express surface carbohydrates that bind weakly to the E-selectin and P-selectin
- 4. Cells spread out on endothelial surface of blood vessels
- 5. Firm adhesion is quickly followed by extravasation into the inflame tissue
- 6. Cells migration through endothelium
- 7. Once engulfed, the cell is activated

CHEMOKINES

- Make migration possible!
- Different cells express different chemokine receptors (allows cell to response to different chemokines)

INTEGRIN

On leukocyte surface. When activated, bind to ICAMs

SELECTIN

 Cell surface lectin that mediate the adhesion of leukocytes to endothelial cells