## Descriptive Statistics

*Average/Sample mean $\bar{X}: \frac{1}{n} \sum_{i=1}^{n} X_{i}$
Maximum/Minimum: The largest/smallest order statistic

- The order statistic are the observations sorted into ascending order; $X_{(1)} \leq X_{(2)}$

Range: Difference between the maximum and the minimum
*Median: Equal numbers of observations above and below (in an order statistic)

- If n is odd: $\mathrm{X}\left(\frac{n+1}{2}\right)$ - e.g. $X(680)$ is the $680^{\text {th }}$ number which is ANS: 73
- If n is even: $\frac{\mathrm{X}\left(\frac{n+1}{2}\right)+\mathrm{X}\left(\frac{n+1}{2}\right)}{2}$ e.g. $\mathrm{X}(3.5) \rightarrow 3.5^{\text {th }}$ observation $\rightarrow$ mean of the two middle numbers
*Mode: The most common value - it may not be unique
*measures of central location

|  | Distribution |  |
| :--- | :--- | :--- |
| Final Marks | Frequency | Relative Frequency |
| H1 (80-100) | 399 | $29.4 \%$ |
| H2A (75-79) | 205 | $15.1 \%$ |
| H2B (70-74) | 191 | $14.1 \%$ |
| H3 (65-69) | 212 | $15.6 \%$ |
| P (50-64) | 187 | $13.8 \%$ |
| N (0-49) | 165 | $12.1 \%$ |
|  |  | $100.0 \%$ |

Frequency distribution:
Number in each
category
Relative Frequency
Distribution:
Percentage in each
category


Frequency Distribution $\rightarrow$ (Clustered) Column Chart (Number)
Relative Frequency Distribution $\rightarrow$ (Clustered) Column Chart
(Percentage) OR Pie Chart

Histogram: Group all observations into (usually) equally sized bins and count. Example: $1^{\text {st }}$ Bin: Exam mark $\leq 5=4$ $2^{\text {nd }}$ Bin: 5 < Exam mark $\leq 10$


Bimodal Histogram (Figure 1): Two
 peaks/modes
Unimodal Histogram: Single peak/modes Symmetric and Normal/Bell Shaped Histogram: Single peak; Mean $\approx$ Median
Negatively skewed Histogram: Long left tail; Unimodal; Mean < Median
Positively skewed Histogram: Long right tail; Unimodal; Mean > Median
Uniform Histogram (Figure 2): No distinct peak/mode;
Mean $\approx$ Median

## When Mean is very different to Median:

Mean is heavily influenced by outliers; the median is not influenced in this way. In this case median gives a more realistic overall idea.

- Median, quartiles, percentiles are generally influenced much less or not at all by outliers.

Displaying Changes over time: Use a line chart/time series plot ( $\mathrm{Y}=$ number ('000s) OR percentage (\%), $X=$ years)

## Measures of relative standing

What marks were needed to reach the top $1 \%$ in 2017? $99^{t h}$ percentile
Percentiles: $\mathrm{p} \%$ of the observations are less than or equal to the p'th percentile (using order statistics)
Let $\mathrm{i}=\frac{P}{100}(n+1)$
[i] : round down, e.g. [12.1] = 12, [12.9] = 12
E.g. Find the $99^{\text {th }}$ percentile from the data set: $10,20,30,40$, and $50 \rightarrow 99 / 100(5+1)=5.94=5 \rightarrow 50$ (99\% of the observations are less than or equal to the $99^{t h}$ percentile (50))
p'th percentile $=X_{(i)}+(i-[i])\left(X_{(i+1)}-X_{(i)}\right)$
First Quartile: $25^{\text {th }}$ percentile
Second Quartile (Median): $50^{\text {th }}$ percentile
Third Quartile: $75^{\text {th }}$ percentile

## Measuring Variability/Dispersion (how spread out the observations are)

Sample Variance: $\mathrm{s}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{x}\right)^{2}$

- Generally uninterpretable because it is $s^{2} \rightarrow$ the square of the units of observation Standard Deviation (s): the square root of Variance Interquartile Range (IQR): a measure of how spread out around the median the values are Third Quartile - First Quartile in order statistics $\rightarrow 50 \%$ lie between the IQR

The lower the answer the lower the variability
Range: Maximum minus the Minimum observation in order statistics (measures the extremes)

When units/scale of two measurements are different (e.g. Assignment: marks out of 7.5, Exam: marks out of 70 ), we use the coefficient of variation to compare between the two measurements Coefficient of Variation: standard deviation divided by the mean $\mathrm{cv}=\frac{s}{\bar{x}} \times 100 \%$; it is unit free

## Measuring Relationships/Associations

2 or more Numerical data are best represented in a Scatter plot


All of them have a low variation except the scatterplot with zero patterns of association

Covariance: Measuring Direction of Association (positive or negative association)
$\operatorname{Cov}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}\right)=\mathrm{S}_{\mathrm{xy}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{x}\right)\left(Y_{i}-\bar{y}\right)$; Unit of measurement is $\mathrm{ANS}^{2}$
$\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right)$ is positive if:

1) $\mathrm{x}_{\mathrm{i}}>\bar{x}$ and $\mathrm{y}_{\mathrm{i}}>\bar{y}$, or
2) $\mathrm{x}_{\mathrm{i}}<\bar{x}$ and $\mathrm{y}_{\mathrm{i}}<\bar{y}$
(xi $-\bar{x}$ )(yi $-\bar{y}$ ) is negative if:
3) $\mathrm{x}_{\mathrm{i}}>\bar{x}$ and $\mathrm{y}_{\mathrm{i}}<\bar{y}$, or
4) $\mathrm{x}_{\mathrm{i}}<\bar{x}$ and $\mathrm{y}_{\mathrm{i}}>\bar{y}$

The covariance is not really useful measure as it is ANS ${ }^{2}$ and thus not interpretable, a much better measure would be correlation

Correlation/Correlation coefficient: Measuring direction and strength of linear association $\mathrm{r}=\frac{\operatorname{cov}(x i, y i)}{\operatorname{sd}(x i) \operatorname{sd}(y i)}=\frac{s_{x y}}{S_{x} S_{y}}$
$-1 \leq r \leq 1$ :

- $\quad \mathbf{r}$ close to $+1 \Rightarrow$ strong positive association
- $r$ close to $\mathbf{- 1} \Rightarrow$ strong negative association
- $\mathbf{r}$ close to $\mathbf{0} \Rightarrow$ weak or no linear association

Correlation cannot explain why there is a relationship - it cannot prove a relationship

Probability is the quantitative technique for dealing with uncertainty and events that (appear to) happen with chance.

Random Experiment: A process for which the outcome cannot be predicted with certaintye.g. "The grade achieved by a randomly chosen student - possible outcomes: H1, H2A, H2B, H3, P, N"

Sample Space: The sample space of a random experiment is the set of all possible outcomes.

- Outcomes can be denoted $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots$.
- Sample space: $\mathrm{S}=\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots\right\}$

Unimelb Grades:
S = \{H1, H2A, H2B, H3, P, N $\}$

## Event (denoted E): Collection of outcomes

Example: A randomly chosen QM1 students passes the subject:

$$
\mathrm{E}=\{\mathrm{H} 1, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 3, \mathrm{P}\}
$$

## An event may also be a single outcome

Example: Trumps gets impeached:

$$
E=\{Y e s\}
$$

Probability: The probability of an event $E$ is denoted $P(E)$, with $0 \leq P(E) \leq 1$

- $\mathbf{P}(\mathbf{E})=\mathbf{0}$ implies E is impossible
- $\mathbf{P}(E)=1$ implies $E$ is certain to occur
- $\mathbf{P}(\mathbf{E})=\mathbf{0 . 5}$ implies E is equally likely to occur or not occur

Probabilities across all outcomes must sum to one: $\mathrm{P}\left(\mathrm{O}_{1}\right)+\mathrm{P}\left(\mathrm{O}_{2}\right)+\ldots=\mathrm{P}(\mathrm{S})=1$

## Assigning Probabilities

1. Using past information
2. Objective / Relative Frequency Approach: $P(E)=$ The relative frequency (proportion) of occurrences of $E$ if the random experiment is repeated indefinitely.
Random Experiment: toss a coin
Repeat n times: $\frac{\text { Number of heads }}{n} \rightarrow \frac{1}{2}$ as $\mathrm{n} \rightarrow \infty$
$\rightarrow P($ Heads $)=\frac{1}{2}$
3. Subjective Approach: The relative frequency approach is not always applicable, as assigning probabilities in some cases can be very difficult. Therefore, some judgement or subjectivity is required, as it is important for decision making

Complement: The complement of an event $A$ is an event denoted $\bar{A}$. $\bar{A}$ is the set of outcomes in $S$ that are not included in A.

$$
P(\bar{A})=1-P(A)
$$

Intersection: The intersection of events $A$ and $B$ is denoted $A \cap B . A \cap B$ is the set of elements common to both A and B

- No Intersection: $A \cap B=\varnothing \rightarrow$ empty set/event
$A$ and $B$ are mutually exclusive events $\rightarrow$ no intersection
Union: The union of events $A$ and $B$ is denoted $A \cup B . A \cup B$ is the set of elements in $A$ or $B$ or both.

Probability of an Event: If an event $E$ contains outcomes $\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{n}\right\}$ then
$P(E)=P\left(O_{1}\right)+P\left(O_{2}\right)+\ldots+P\left(O_{n}\right)$
If $E=\varnothing$ then $P(E)=0$

Addition Rule for Probabilities: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Joint Probability: $P(A \cap B)$ is called the joint probability of $A$ and $B$ i.e. the probability that both $A$ and B occur
Marginal Probability: $P(A)$ is called the marginal probability of $A$.

Independent Events: $A$ and $B$ are independent events if $P(A \cap B)=P(A) P(B)$
Independence means the probability of $A$ occurring is unaffected by knowledge of whether $B$ occurred, and the reverse.

Conditional Probability: The probability of an event $A$ conditional on an event $B$ is

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{P(A \cap B)}{p(B)}
$$

- Condition on an event: treat the event as known to have occurred.
- Probability of A given B has occurred

Multiplication Rule for Probabilities: $P(A \cap B)=P(A \mid B) \times P(B)$
If $A$ and $B$ are independent, i.e. $P(A \cap B)=P(A) P(B)$, then
$P(A) P(B)=P(A \mid B) \times P(B)$
And hence $P(A \mid B)=P(A) * 3$ tests for independence
i.e. the probability of $A$ is unaffected by knowledge of whether or not $B$ has occurred

Remember: Two independent variables have a zero covariance *4 tests for independence

Bayes Therom: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P(B \mid A) P(A)}{P(B)}$
It is the combination of the two multiplication rules:
$P(A \cap B)=P(A \mid B) \times P(B)$
$P(A \cap B)=P(B \mid A) \times P(A)$
To imply
$P(A \mid B) P(B)=P(B \mid A) P(A)$
And then divide both sides by $P(B)$

Law of Total Probability: $P(A)=P(A \cap B)+P(A \cap \bar{B})$

$$
=\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~A} \mid \bar{B}) \mathrm{P}(\bar{B})
$$

First line: Some outcomes in A may also be in $B-P(A \cap B)$
The rest of the outcomes in A are not in $\mathrm{B}-\mathrm{P}(\mathrm{A} \cap \bar{B})$
Second line: Apply the Multiplication rule to each term.

## Are you on drugs?

## Probabilities provided:

"On any given Saturday night, perhaps 1\% of Australians may take the drug ecstasy." P(E) = 0.01
Test can "correctly detect the presence of ecstasy with probability 0.99 " $\mathbf{P}(\mathbf{T} \mid \mathbf{E})=\mathbf{0 . 9 9}$
Test can "correctly detect the absence of ecstasy with probability 0.99 " $\mathbf{P}(\overline{\boldsymbol{T}}) \mid \overline{\boldsymbol{E}})=\mathbf{0 . 9 9}$
"One Saturday night a randomly selected motorist tests positive for ecstasy - what is the probability they have actually taken it?" $\mathbf{P}(\mathbf{E} \mid \mathrm{T})=$ ? ?? = $\mathbf{0 . 5}$

## Translation into Probability Notation

## Events:

- E : individual has actually taken ecstasy that night
- $\overline{\mathrm{E}}$ : individual has not taken ecstasy that night
- T: test is positive
- $\overline{\mathrm{T}}$ : test is negative


## Four possibilities:

1. Individual took ecstasy and tested positive $(E \cap T)$ (Test was correct)
2. Individual took ecstasy and tested negative ( $\mathbf{E} \cap \overline{\mathbf{T}}$ ) ("False negative")
3. Individual did not take ecstasy and tested positive ( $\overline{\boldsymbol{E}} \cap \mathrm{T}$ ) ("False positive")
4. Individual did not take ecstasy and tested negative $(\overline{\boldsymbol{E}} \cap \overline{\boldsymbol{T}})$ (Test was correct)

Using Bayes Theorem as we need to reverse the order of the conditioning:

$$
\mathrm{P}(\mathrm{E} \mid \mathrm{T})=\frac{P(T \mid E) P(E)}{p(T)}=0.99 \times 0.01 / ? ?
$$

Substitute the Law of Total Probability into equation

$$
\begin{aligned}
\mathrm{P}(\mathrm{E} \mid \mathrm{T})= & \frac{P(T \mid E) P(E)}{\mathrm{P}(\mathrm{~T} \cap \mathrm{E})+\mathrm{P}(\mathrm{~T} \cap \bar{E})}=\frac{P(T \mid E) P(E)}{\mathrm{P}(\mathrm{~T} \mid \mathrm{E}) \mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{~T} \mid \bar{E}) \mathrm{P}(\bar{E})} \\
& =\frac{0.99 \times 0.01}{(0.99 \times 0.01)+(0.01 \times 0.99)}=0.5
\end{aligned}
$$

REMEMBER: $(\bar{T} \mid \bar{E})=0.99$, Thus $(T \mid \bar{E})=0.01$
AND: $(T \mid E)=0.99$, $\operatorname{Thus}(\bar{T} \mid E)=0.01$

## Another way of handling this question is to do a Tree Representation

| Take | Test | Joint |
| :---: | :---: | :---: |
| Ecstasy | Positive | Probabilities |



Random Variables: is a rule/function that assigns a numerical value to each outcome of a random experiment (e.g. $X=$ heads when flipping a coin twice; $X=2, X=1, X=0$ )

Discrete random variable: has a finite or countably infinite number of outcomes.

- e.g. dice rolling has possible values 1, 2, 3, 4, 5, 6
- e.g. number of shares traded on a randomly selected day.

Continuous random variable: has an uncountably infinite number of possible outcomes. e.g. draw a real number at random between 0 and 1

Example. Let X denote the value from a single dice roll Probability distribution:

| $x$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X=x)$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

Discrete Probability Distributions: A probability distribution for a discrete random variable gives the probability of each of the possible outcomes
If the random variable is denoted $X$ then the probability distribution is written $P(X=x)=p(x)$, for any number $x$.

Expected Value/weighted average of the random variable: A discrete random variable $X$ with possible outcomes $x_{1}, x_{2}, \ldots, x_{n}$ and probability distribution $p(x)$ has expected value

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\mathrm{x}_{1} \mathrm{p}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{p}\left(\mathrm{x}_{2}\right)+\ldots+\mathrm{x}_{\mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{n}}\right)=\sum_{i=1}^{n} \mathrm{x}_{i} \mathrm{p}\left(\mathrm{x}_{i}\right) \\
& =\text { units of measurement of the random variable }
\end{aligned}
$$

## Addition rule for Expected Values

$X=X_{1}+X_{2}+\ldots+X_{n}$ then
$E(X)=E\left(X_{1}\right)+E\left(X_{2}\right)+\ldots+E\left(X_{n}\right)$

## Dispersion of the possible values of $X$ from its expected value - (on how uncertain they are - the risk)

- The variance of a random variable $X$ is
$\operatorname{var}(X)=E\left[(X-E(X))^{2}\right] \rightarrow\left[P\left(x_{1}\right) *\left(x_{1}-E(x)\right)^{2}\right]+\left[P\left(x_{2}\right) *\left(x_{2}-E(x)\right)^{2}\right]$ etc
OR $E\left(X^{2}\right)-E(X)$
Units is ANS ${ }^{2}$ i.e. 20 dollars ${ }^{2}$
- The standard deviation is
sd(X) = Vvar(X).
Units is just ANS

Remember: Integers are ones without a fractional component

## Joint Probability Distributions

Consider random variables $X$ and $Y$ with possible outcomes $x_{1}, \ldots, x_{m}$ and $y_{1}, \ldots, y_{n}$.

- The joint probability distribution of $X$ and $Y$ is $p(x, y)=P(X=x$ and $Y=y)$ for any numbers $x$ and $y$.

The marginal probability distributions of $X$ and $Y$ are

$$
\begin{align*}
& P(X=x)=\sum_{i=1}^{n} p\left(x, y_{i}\right)  \tag{LawofTotalProbability}\\
& P(Y=y)=\sum_{i=1}^{m} p\left(x_{i}, y\right)
\end{align*}
$$

Example:

| $\mathbf{Z}$ | $\mathbf{9 0}$ | $\mathbf{1 2 0}$ |
| :--- | :--- | :--- |
| $\mathbf{P ( Z = z )}$ | 0.4 | 0.6 |


| $\mathbf{T}$ | $\mathbf{8 6}$ | $\mathbf{1 3 0}$ |
| :--- | :--- | :--- |
| $\mathbf{P}(\mathbf{T}=t)$ | 0.5 | 0.5 |


|  | Z |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| $\mathbf{T} \mathbf{T}$ |  | $\mathbf{9 0}$ | $\mathbf{1 2 0}$ |  |
|  | $\mathbf{8 6}$ | 0.1 | 0.4 | $\mathbf{0 . 5}$ |
|  | 130 | 0.3 | 0.2 | $\mathbf{0 . 5}$ |
|  |  | $\mathbf{0 . 4}$ | $\mathbf{0 . 6}$ | $\mathbf{1}$ |

$\rightarrow$ Joint probability is within this table
E.g. $p(86,90)=P(T=86$ and $Z=90)=0.1$

These numbers would be given to you (not worked out)
All of the probabilities add up to $1=0.1+0.4+0.3+0.2$
$\rightarrow$ Marginal Probability
e.g. $P(Z=90)=P(Z=90, T=86)+P(Z=90, T=130)$
$=0.1+0.3$
$=0.4$
When given the joint probabilities, marginal probability can be worked out, however this does not work the other way around. However, if you have independent random variables $\rightarrow$ then joint probabilities are equal to the product of the marginal probabilities

## What if you split your money equally between the two?

The random payoff from $\$ 100$ of Facebook shares is $Z$
$\rightarrow$ The random payoff from $\mathbf{\$ 5 0}$ of Facebook shares is $\mathbf{0 . 5 Z}$
The random payoff from $\$ 100$ in Thelonious's hedge fund is T
$\rightarrow$ The random payoff from $\mathbf{\$ 5 0}$ in Thelonious's hedge fund is $\mathbf{0 . 5 T}$

Portfolio: \$50 of Facebook shares and \$50 in Thelonious's hedge fund
Portfolio random payoff: $\mathrm{Q}=0.5 Z+0.5 T$

|  | Z |  |  |  | $\rightarrow$ Po |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T |  | 90 |  | 120 |  |
|  | 86 | 88 |  | 103 |  |
|  | 130 | 110 |  | 125 |  |
| Q |  | 88 | 103 | 110 | 125 |
| $P(Q=q)$ |  | 0.1 | 0.4 | 0.3 | 0.2 |

$\rightarrow$ Possible outcomes for Q Probabilities $\leftarrow$

|  | $\mathbf{Z}$ |  |  |
| :--- | :--- | :--- | :--- |
| $\mathbf{T y} \mathbf{T}$ |  | $\mathbf{9 0}$ | $\mathbf{1 2 0}$ |
|  | $\mathbf{8 6}$ | 0.1 | 0.4 |
|  | $\mathbf{1 3 0}$ | 0.3 | 0.2 |

$\rightarrow$ Probability distribution of Q

If

$$
X=w_{1} X_{1}+w_{2} X_{2}+\ldots+w_{n} X_{n}
$$

( $w_{i}$ 's are fixed weights) then

$$
E(X)=w_{1} E\left(X_{1}\right)+w_{2} E\left(X_{2}\right)+\ldots+w_{n} E\left(X_{n}\right) .
$$

## The Addition Rule for Expected Values with weights

$$
Q=0.5 Z+0.5 T
$$

e.g $E(Q)=0.5 E(Z)+0.5 E(T)$

The weights do not have to add up to 1
$\operatorname{cov}(X, Y)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(x_{i}-E(X)\right)\left(y_{j}-E(Y)\right) \cdot p\left(x_{i}, y_{j}\right)$
Covariance: between two random variables $X$ and $Y$ is: $\operatorname{cov}(X, Y)=E[(X-E(X))(Y-E(Y))]$

- multiply each possible $\left(x_{i}-E(X)\right)$ by each possible $\left(y_{j}-E(Y)\right)$
- weight by the joint probabilities $p\left(x_{i}, y_{j}\right)$
- add up all $m \times n$ of these terms


## Example

|  | Z |  |  |
| :--- | :--- | :--- | :--- |
| $\mathbf{T}$ |  | $\mathbf{9 0}$ | $\mathbf{1 2 0}$ |
|  | $\mathbf{8 6}$ | 0.1 | 0.4 |
|  | 130 | 0.3 | 0.2 |

$$
\begin{aligned}
\operatorname{cov}(T, Z)= & \sum_{i=1}^{2} \sum_{j=1}^{2}\left(t_{i}-E(T)\right)\left(z_{j}-E(Z)\right) \cdot p\left(t_{i}, z_{j}\right) \\
= & (86-108)(90-108) \cdot p(86,90) \\
& +(86-108)(120-108) \cdot p(86,120) \\
& +(130-108)(90-108) \cdot p(130,90) \\
& +(130-108)(120-108) \cdot p(130,120)
\end{aligned}
$$

$p(86,90)=0.1$
ANS: -132 = units is $\mathrm{X}^{2}$ e.g. dollars ${ }^{2}$
A negative relationship between $T$ and $Z$
When the payoff for one variable goes up, the other goes down

The correlation between two random variables $X$ and $Y$ is

$$
\operatorname{cor}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\operatorname{sd}(X) \cdot \operatorname{sd}(Y)} \quad(-1 \leq \operatorname{cor}(X, Y) \leq 1)
$$

If $w_{1}$ and $w_{2}$ are fixed weights then
$\operatorname{var}\left(w_{1} X+w_{2} Y\right)=w_{1}^{2} \operatorname{var}(X)+2 w_{1} w_{2} \operatorname{cov}(X, Y)+w_{2}^{2} \operatorname{var}(Y)$
Example. $\quad \stackrel{w_{1}}{\downarrow} \stackrel{w_{2}}{\downarrow}$

| $\operatorname{var}(Q)$ | $=\operatorname{var}(0.5 T+0.5 Z)$ |
| ---: | :--- |
| $=$ | $0.5^{2} \times \operatorname{var}(T)+2 \times 0.5 \times 0.5 \times \operatorname{cov}(T, Z)+0.5^{2} \times \operatorname{var}(Z)$ |
| $=$ | $0.5^{2} \times 484+2 \times 0.5 \times 0.5 \times(-132)+0.5^{2} \times 216$ |
| $=$ | 109 |

$=\mathbf{w} \times 108+(1-\mathbf{w}) \times 108=\$ 108$
Can we choose $w$ to minimise risk?

## Correlation

e.g. ANS: $-0.41=a$ moderately strong negative relationship between $T$ and $Z$

## $\rightarrow$ Addition rule for variances

## What's the best portfolio? (Highest return with the lowest risk)

Suppose we invest fraction w in Z, and hence 1 - w in $T$

Define the portfolio:
Q = wZ + (1 - w $\mathbf{T}$
For any $w$, an investment of $\$ 100$ in $Q$ has expected value
$E(Q)=w E(Z)+(1-w) E(T)$

$$
\begin{aligned}
& \operatorname{var}(Q)=\operatorname{var}(w Z+(1-w) T) \\
& =w^{2} \operatorname{var}(Z)+2 w(1-w) \operatorname{cov}(Z, T)+(1-w)^{2} \operatorname{var}(T) \rightarrow \text { addition rule for variances } \\
& =w^{2} \times 216+2 w(1-w) \times(-132)+(1-w)^{2} \times 484
\end{aligned}
$$

## Algebra:

$216 w^{2}-132\left(2 w-2 w^{2}\right)+484-968 w+484 w^{2}$
$216 w^{2}-264 w+264 w^{2}+484-968 w+484 w^{2}$

1. $\operatorname{var}(Q)=964 w^{2}-1232 w+484$

Risk is a quadratic (i.e. parabola) in w , with minimum solving
$\frac{d v a r(Q)}{d w}=2 \times 964 \mathrm{w}-1232$
$=1928 \mathrm{w}-1232=0$.
Thus $\mathrm{w}=\frac{1232}{1928}=0.639$ is the risk-minimising allocation to Z .

1. $\operatorname{var}(Q)=964 \times 0.639^{2}-1232 \times 0.639+484=90.373$

Remember:

- More than $\rightarrow$ does not include the number, at least $\rightarrow$ includes the number
- If random variables are independent, covariance is zero and correlation is 0

